Suppr超能文献

使用累积失效函数对纵向和竞争风险数据进行联合建模,针对潜在的失效原因误分类,通过双重抽样对失效子模型进行建模。

Joint modeling of longitudinal and competing-risk data using cumulative incidence functions for the failure submodels accounting for potential failure cause misclassification through double sampling.

机构信息

Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.

Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece.

出版信息

Biostatistics. 2023 Dec 15;25(1):80-97. doi: 10.1093/biostatistics/kxac043.

Abstract

Most of the literature on joint modeling of longitudinal and competing-risk data is based on cause-specific hazards, although modeling of the cumulative incidence function (CIF) is an easier and more direct approach to evaluate the prognosis of an event. We propose a flexible class of shared parameter models to jointly model a normally distributed marker over time and multiple causes of failure using CIFs for the survival submodels, with CIFs depending on the "true" marker value over time (i.e., removing the measurement error). The generalized odds rate transformation is applied, thus a proportional subdistribution hazards model is a special case. The requirement that the all-cause CIF should be bounded by 1 is formally considered. The proposed models are extended to account for potential failure cause misclassification, where the true failure causes are available in a small random sample of individuals. We also provide a multistate representation of the whole population by defining mutually exclusive states based on the marker values and the competing risks. Based solely on the assumed joint model, we derive fully Bayesian posterior samples for state occupation and transition probabilities. The proposed approach is evaluated in a simulation study and, as an illustration, it is fitted to real data from people with HIV.

摘要

大多数关于纵向和竞争风险数据联合建模的文献都是基于病因特异性风险的,尽管累积发生率函数(CIF)的建模是评估事件预后的一种更简单、更直接的方法。我们提出了一类灵活的共享参数模型,用于使用生存子模型的 CIF 联合建模随时间变化的正态分布标记和多个失效原因,其中 CIF 随时间的“真实”标记值而变化(即,消除测量误差)。应用广义赔率变换,因此比例子分布危害模型是一个特例。正式考虑了全因 CIF 应限制在 1 的要求。所提出的模型扩展到可以解释潜在的失效原因分类错误,其中在个体的小随机样本中可以获得真实的失效原因。我们还通过基于标记值和竞争风险定义互斥状态,为整个人群提供了多状态表示。仅基于假设的联合模型,我们为状态占用和转移概率推导出完全贝叶斯后验样本。该方法在模拟研究中进行了评估,并作为说明,它适用于 HIV 患者的真实数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b60e/10724131/a5620bcca0fb/kxac043f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验