Mao Lu, Lin D Y
Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599-7420, USA.
J R Stat Soc Series B Stat Methodol. 2017 Mar;79(2):573-587. doi: 10.1111/rssb.12177. Epub 2016 Apr 14.
The cumulative incidence is the probability of failure from the cause of interest over a certain time period in the presence of other risks. A semiparametric regression model proposed by Fine and Gray (1999) has become the method of choice for formulating the effects of covariates on the cumulative incidence. Its estimation, however, requires modeling of the censoring distribution and is not statistically efficient. In this paper, we present a broad class of semiparametric transformation models which extends the Fine and Gray model, and we allow for unknown causes of failure. We derive the nonparametric maximum likelihood estimators (NPMLEs) and develop simple and fast numerical algorithms using the profile likelihood. We establish the consistency, asymptotic normality, and semiparametric efficiency of the NPMLEs. In addition, we construct graphical and numerical procedures to evaluate and select models. Finally, we demonstrate the advantages of the proposed methods over the existing ones through extensive simulation studies and an application to a major study on bone marrow transplantation.
累积发病率是指在存在其他风险的情况下,在特定时间段内由感兴趣的原因导致失败的概率。Fine和Gray(1999年)提出的半参数回归模型已成为制定协变量对累积发病率影响的首选方法。然而,其估计需要对删失分布进行建模,并且在统计上效率不高。在本文中,我们提出了一类广泛的半参数变换模型,该模型扩展了Fine和Gray模型,并且我们允许存在未知的失败原因。我们推导了非参数最大似然估计量(NPMLE),并使用轮廓似然法开发了简单快速的数值算法。我们建立了NPMLE的一致性、渐近正态性和半参数效率。此外,我们构建了图形和数值程序来评估和选择模型。最后,我们通过广泛的模拟研究以及在一项关于骨髓移植的主要研究中的应用,证明了所提出方法相对于现有方法的优势。