Suppr超能文献

竞争风险累积发生率半参数转换模型的有效估计

Efficient Estimation of Semiparametric Transformation Models for the Cumulative Incidence of Competing Risks.

作者信息

Mao Lu, Lin D Y

机构信息

Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599-7420, USA.

出版信息

J R Stat Soc Series B Stat Methodol. 2017 Mar;79(2):573-587. doi: 10.1111/rssb.12177. Epub 2016 Apr 14.

Abstract

The cumulative incidence is the probability of failure from the cause of interest over a certain time period in the presence of other risks. A semiparametric regression model proposed by Fine and Gray (1999) has become the method of choice for formulating the effects of covariates on the cumulative incidence. Its estimation, however, requires modeling of the censoring distribution and is not statistically efficient. In this paper, we present a broad class of semiparametric transformation models which extends the Fine and Gray model, and we allow for unknown causes of failure. We derive the nonparametric maximum likelihood estimators (NPMLEs) and develop simple and fast numerical algorithms using the profile likelihood. We establish the consistency, asymptotic normality, and semiparametric efficiency of the NPMLEs. In addition, we construct graphical and numerical procedures to evaluate and select models. Finally, we demonstrate the advantages of the proposed methods over the existing ones through extensive simulation studies and an application to a major study on bone marrow transplantation.

摘要

累积发病率是指在存在其他风险的情况下,在特定时间段内由感兴趣的原因导致失败的概率。Fine和Gray(1999年)提出的半参数回归模型已成为制定协变量对累积发病率影响的首选方法。然而,其估计需要对删失分布进行建模,并且在统计上效率不高。在本文中,我们提出了一类广泛的半参数变换模型,该模型扩展了Fine和Gray模型,并且我们允许存在未知的失败原因。我们推导了非参数最大似然估计量(NPMLE),并使用轮廓似然法开发了简单快速的数值算法。我们建立了NPMLE的一致性、渐近正态性和半参数效率。此外,我们构建了图形和数值程序来评估和选择模型。最后,我们通过广泛的模拟研究以及在一项关于骨髓移植的主要研究中的应用,证明了所提出方法相对于现有方法的优势。

相似文献

2
Weighted NPMLE for the Subdistribution of a Competing Risk.竞争风险子分布的加权非参数最大似然估计
J Am Stat Assoc. 2019;114(525):259-270. doi: 10.1080/01621459.2017.1401540. Epub 2018 Jul 9.

引用本文的文献

3
Competing risks regression for clustered data with covariate-dependent censoring.具有协变量依赖删失的聚类数据的竞争风险回归
Commun Stat Theory Methods. 2025;54(4):1081-1099. doi: 10.1080/03610926.2024.2329771. Epub 2024 Mar 31.

本文引用的文献

1
Semiparametric transformation models for semicompeting survival data.半竞争生存数据的半参数变换模型
Biometrics. 2014 Sep;70(3):599-607. doi: 10.1111/biom.12178. Epub 2014 Apr 21.
3
Competing risks in epidemiology: possibilities and pitfalls.流行病学中的竞争风险:可能性与陷阱。
Int J Epidemiol. 2012 Jun;41(3):861-70. doi: 10.1093/ije/dyr213. Epub 2012 Jan 9.
4
Checking semiparametric transformation models with censored data.检查带有删失数据的半参数变换模型。
Biostatistics. 2012 Jan;13(1):18-31. doi: 10.1093/biostatistics/kxr017. Epub 2011 Jul 23.
6
Flexible competing risks regression modeling and goodness-of-fit.灵活的竞争风险回归建模与拟合优度
Lifetime Data Anal. 2008 Dec;14(4):464-83. doi: 10.1007/s10985-008-9094-0. Epub 2008 Aug 28.
8
Regression modeling of semicompeting risks data.半竞争风险数据的回归建模
Biometrics. 2007 Mar;63(1):96-108. doi: 10.1111/j.1541-0420.2006.00621.x.
9
Parametric regression on cumulative incidence function.累积发病率函数的参数回归
Biostatistics. 2007 Apr;8(2):184-96. doi: 10.1093/biostatistics/kxj040. Epub 2006 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验