Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100080, PR China.
Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100080, PR China.
Microb Pathog. 2022 Dec;173(Pt A):105863. doi: 10.1016/j.micpath.2022.105863. Epub 2022 Nov 1.
The natural compound, exopolysaccharide from Lactobacillus casei NA-2 (EPS-cn2), has been shown to inhibit biofilm formation by Escherichia coli O157:H7. Although bacterial adhesion to substrate surfaces is a primary, indispensable step in this process, the mechanisms by which EPS-cn2 can block E. coli O157:H7 adhesion to biotic or abiotic surfaces remain unclear. In this study, investigation of E. coli O157:H7 response to EPS-cn2 revealed that 1 mg/mL EPS-cn2 can decrease adherence to polystyrene and confluent Caco-2 cell surfaces to 49.0% (P<0.0001) and 57.0% (P<0.01) of that in untreated E. coli O157:H7, respectively. Moreover, EPS-cn2 significantly reduced outer membrane hydrophobicity by 49.0% and decreased the electronegativity of the membrane surface charge by as much as 1.57 mV (P<0.05) compared to untreated cells. High throughput RNA sequencing indicated that genes responsible for adhesion through extracellular matrix secretion, such as poly-N-acetyl-glucosamine (PNAG) biosynthesis, locus of enterocyte effacement (LEE) proteins and outer membrane protein (OmpT) were all down-regulated in response to EPS-cn2, while chemotaxis and motility-related flagellar assembly genes were differentially up-regulated, suggesting that the EPS-cn2 may serve as an extracellular signal to attenuate adhesion-related gene expression and alter bacterial surface properties in E. coli O157:H7. These findings support the further development of EPS-cn2 for pathogenic biofilm management in clinical and industrial settings, and suggests the further targeting of adhesion-related genes to limit the persistence of this highly pathogenic strain in sensitive environments.
从干酪乳杆菌 NA-2 中提取的天然化合物胞外多糖(EPS-cn2)已被证明可抑制大肠杆菌 O157:H7 生物膜的形成。尽管细菌黏附到基质表面是这一过程的一个主要且必不可少的步骤,但 EPS-cn2 阻止大肠杆菌 O157:H7 黏附到生物或非生物表面的机制尚不清楚。在这项研究中,对大肠杆菌 O157:H7 对 EPS-cn2 的反应的研究表明,1mg/mL 的 EPS-cn2 可将其对聚苯乙烯和融合的 Caco-2 细胞表面的黏附率分别降低到未经处理的大肠杆菌 O157:H7 的 49.0%(P<0.0001)和 57.0%(P<0.01)。此外,与未经处理的细胞相比,EPS-cn2 使外膜疏水性显著降低了 49.0%,并使膜表面电荷的电负性降低了 1.57mV(P<0.05)。高通量 RNA 测序表明,与细胞外基质分泌相关的黏附基因,如聚-N-乙酰葡萄糖胺(PNAG)生物合成、肠上皮细胞消失(LEE)蛋白和外膜蛋白(OmpT)的基因,都对 EPS-cn2 有响应,而趋化性和运动相关的鞭毛组装基因则呈差异化上调,这表明 EPS-cn2 可能作为一种细胞外信号,减弱与黏附相关的基因表达,并改变大肠杆菌 O157:H7 细菌表面特性。这些发现支持进一步开发 EPS-cn2 以用于临床和工业环境中的致病生物膜管理,并表明进一步针对黏附相关基因以限制这种高致病性菌株在敏感环境中的持久性。