Suppr超能文献

自动化全切片图像分析用于肝纤维化的转化定量。

Automated whole slide image analysis for a translational quantification of liver fibrosis.

机构信息

Biocellvia, 10 Rue Grignan, 13001, Marseille, France.

Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.

出版信息

Sci Rep. 2022 Nov 4;12(1):17935. doi: 10.1038/s41598-022-22902-w.

Abstract

Current literature highlights the need for precise histological quantitative assessment of fibrosis which cannot be achieved by conventional scoring systems, inherent to their discontinuous values and reader-dependent variability. Here we used an automated image analysis software to measure fibrosis deposition in two relevant preclinical models of liver fibrosis, and established correlation with other quantitative fibrosis descriptors. Longitudinal quantification of liver fibrosis was carried out during progression of post-necrotic (CCl-induced) and metabolic (HF-CDAA feeding) models of chronic liver disease in mice. Whole slide images of picrosirius red-stained liver sections were analyzed using a fully automated, unsupervised software. Fibrosis was characterized by a significant increase of collagen proportionate area (CPA) at weeks 3 (CCl) and 8 (HF-CDAA) with a progressive increase up to week 18 and 24, respectively. CPA was compared to collagen content assessed biochemically by hydroxyproline assay (HYP) and by standard histological staging systems. CPA showed a high correlation with HYP content for CCl (r = 0.8268) and HF-CDAA (r = 0.6799) models. High correlations were also found with Ishak score or its modified version (r = 0.9705) for CCl and HF-CDAA (r = 0.9062) as well as with NASH CRN for HF-CDAA (r = 0.7937). Such correlations support the use of automated digital analysis as a reliable tool to evaluate the dynamics of liver fibrosis and efficacy of antifibrotic drug candidates in preclinical models.

摘要

目前的文献强调需要对纤维化进行精确的组织学定量评估,而传统的评分系统无法做到这一点,因为这些系统的数值是不连续的,并且存在读者依赖性的变异性。在这里,我们使用自动化图像分析软件来测量两种相关的肝纤维化临床前模型中的纤维化沉积,并与其他定量纤维化描述符建立相关性。我们在 CCl 诱导的坏死后(CCl 诱导)和 HF-CDAA 喂养的代谢(HF-CDAA 喂养)两种慢性肝病的临床前模型中进行了肝纤维化的纵向定量分析。使用全自动、无监督的软件对天狼星红染色的肝切片的全幻灯片图像进行了分析。纤维化的特征是在第 3 周(CCl)和第 8 周(HF-CDAA)时胶原比例面积(CPA)显著增加,分别在第 18 周和第 24 周逐渐增加。CPA 与羟脯氨酸测定法(HYP)和标准组织学分期系统评估的胶原含量进行了比较。CPA 与 CCl(r=0.8268)和 HF-CDAA(r=0.6799)模型中的 HYP 含量高度相关。与 Ishak 评分或其改良版(r=0.9705)以及 HF-CDAA 的 NASH CRN(r=0.7937)也有很高的相关性。这些相关性支持使用自动化数字分析作为一种可靠的工具,来评估临床前模型中肝纤维化的动态变化和抗纤维化药物候选物的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa39/9636208/5dab953a5f45/41598_2022_22902_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验