Suppr超能文献

使用神经网络进行 T2 MRI 下的通用淋巴结检测。

Universal lymph node detection in T2 MRI using neural networks.

机构信息

Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Clinical Center, NIH, Bethesda, MD, USA.

National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA.

出版信息

Int J Comput Assist Radiol Surg. 2023 Feb;18(2):313-318. doi: 10.1007/s11548-022-02782-1. Epub 2022 Nov 4.

Abstract

PURPOSE

Identification of lymph nodes (LNs) that are suspicious for metastasis in T2 Magnetic Resonance Imaging (MRI) is critical for assessment of lymphadenopathy. Prior work on LN detection has been limited to specific anatomical regions of the body (pelvis, rectum). Therefore, an approach to universally detect both benign and metastatic nodes in T2 MRI studies of the body is highly desirable.

METHODS

We developed a Computer Aided Detection (CAD) pipeline to universally identify LN in T2 MRI. First, we trained various neural networks for detecting LN: Faster RCNN with and without Hard Negative Example Mining (HNEM), FCOS, FoveaBox, VFNet, and Detection Transformer (DETR). Next, we show that VFNet with Adaptive Training Sample Selection (ATSS) outperformed Faster RCNN with HNEM. Finally, we ensembled models that surpassed a 45% mAP threshold.

RESULTS

Experiments on 122 test studies revealed that VFNet achieved a 51.1% mAP and 78.7% recall at 4 false positives (FP) per volume, while the one-stage model ensemble achieved a mAP of 52.3% and sensitivity of 78.7% at 4FP. We found that VFNet and the one-stage model ensemble can be interchangeably used in the CAD pipeline.

CONCLUSION

Our CAD pipeline universally detected both benign and metastatic nodes in T2 MRI studies, resulting in a sensitivity improvement of [Formula: see text]14% over the current LN detection approaches (sensitivity of 78.7% at 4 FP vs. 64.6% at 5 FP per volume).

摘要

目的

在 T2 磁共振成像 (MRI) 中识别可疑转移的淋巴结 (LNs) 对于评估淋巴结病至关重要。先前的 LN 检测工作仅限于身体的特定解剖区域(骨盆、直肠)。因此,非常需要一种能够在身体的 T2 MRI 研究中普遍检测良性和转移性淋巴结的方法。

方法

我们开发了一种计算机辅助检测 (CAD) 管道,以在 T2 MRI 中普遍识别 LN。首先,我们训练了各种用于检测 LN 的神经网络:带有和不带有硬负例挖掘 (HNEM) 的 Faster RCNN、FCOS、FoveaBox、VFNet 和 Detection Transformer (DETR)。接下来,我们表明带有自适应训练样本选择 (ATSS) 的 VFNet 优于带有 HNEM 的 Faster RCNN。最后,我们集成了超过 45% mAP 阈值的模型。

结果

在 122 项测试研究中的实验表明,VFNet 在每体积 4 个假阳性 (FP) 时达到了 51.1%的 mAP 和 78.7%的召回率,而单阶段模型集成在每体积 4 个 FP 时达到了 52.3%的 mAP 和 78.7%的敏感性。我们发现 VFNet 和单阶段模型集成可以在 CAD 管道中互换使用。

结论

我们的 CAD 管道在 T2 MRI 研究中普遍检测到良性和转移性淋巴结,与当前的 LN 检测方法相比,敏感性提高了 14%(每体积 4 个 FP 的敏感性为 78.7%,而 5 个 FP 的敏感性为 64.6%)。

相似文献

1
Universal lymph node detection in T2 MRI using neural networks.使用神经网络进行 T2 MRI 下的通用淋巴结检测。
Int J Comput Assist Radiol Surg. 2023 Feb;18(2):313-318. doi: 10.1007/s11548-022-02782-1. Epub 2022 Nov 4.
2
Universal detection and segmentation of lymph nodes in multi-parametric MRI.多参数 MRI 中淋巴结的通用检测与分割。
Int J Comput Assist Radiol Surg. 2024 Jan;19(1):163-170. doi: 10.1007/s11548-023-02954-7. Epub 2023 Jun 16.
3
Detection of abdominopelvic lymph nodes in multi-parametric MRI.多参数 MRI 中腹盆淋巴结的检测。
Comput Med Imaging Graph. 2024 Jun;114:102363. doi: 10.1016/j.compmedimag.2024.102363. Epub 2024 Mar 1.

本文引用的文献

3
Does image normalization and intensity resolution impact texture classification?图像归一化和强度分辨率是否会影响纹理分类?
Comput Med Imaging Graph. 2020 Apr;81:101716. doi: 10.1016/j.compmedimag.2020.101716. Epub 2020 Mar 6.
5
Focal Loss for Dense Object Detection.用于密集目标检测的焦散损失
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327. doi: 10.1109/TPAMI.2018.2858826. Epub 2018 Jul 23.
8
N4ITK: improved N3 bias correction.N4ITK:改进的 N3 偏置校正。
IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20. doi: 10.1109/TMI.2010.2046908. Epub 2010 Apr 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验