Suppr超能文献

深度学习在恶性淋巴结分割与检测中的应用综述

Deep learning for malignant lymph node segmentation and detection: a review.

作者信息

Wu Wenxia, Laville Adrien, Deutsch Eric, Sun Roger

机构信息

Unité Mixte de Recherche (UMR) 1030, Gustave Roussy, Department of Radiation Oncology, Université Paris-Saclay, Villejuif, France.

出版信息

Front Immunol. 2025 Apr 28;16:1526518. doi: 10.3389/fimmu.2025.1526518. eCollection 2025.

Abstract

Radiation therapy remains a cornerstone in the treatment of cancer, with the delineation of Organs at Risk (OARs), tumors, and malignant lymph nodes playing a critical role in the planning process. However, the manual segmentation of these anatomical structures is both time-consuming and costly, with inter-observer and intra-observer variability often leading to delineation errors. In recent years, deep learning-based automatic segmentation has gained increasing attention, leading to a proliferation of scholarly works on OAR and tumor segmentation algorithms utilizing deep learning techniques. Nevertheless, similar comprehensive reviews focusing solely on malignant lymph nodes are scarce. This paper provides an in-depth review of the advancements in deep learning for malignant lymph node segmentation and detection. After a brief overview of deep learning methodologies, the review examines specific models and their outcomes for malignant lymph node segmentation and detection across five clinical sites: head and neck, upper extremity, chest, abdomen, and pelvis. The discussion section extensively covers the current challenges and future trends in this field, analyzing how they might impact clinical applications. This review aims to bridge the gap in literature by providing a focused overview on deep learning applications in the context of malignant lymph node challenges, offering insights into their potential to enhance the precision and efficiency of cancer treatment planning.

摘要

放射治疗仍然是癌症治疗的基石,在放疗计划过程中,危及器官(OARs)、肿瘤及恶性淋巴结的勾画起着关键作用。然而,这些解剖结构的手动分割既耗时又昂贵,观察者间和观察者内的差异常常导致勾画错误。近年来,基于深度学习的自动分割越来越受到关注,引发了大量利用深度学习技术进行OAR和肿瘤分割算法的学术研究。然而,专门针对恶性淋巴结的类似全面综述却很少。本文深入回顾了深度学习在恶性淋巴结分割与检测方面的进展。在简要概述深度学习方法之后,该综述考察了针对五个临床部位(头颈部、上肢、胸部、腹部和骨盆)的恶性淋巴结分割与检测的具体模型及其结果。讨论部分广泛涵盖了该领域当前的挑战和未来趋势,分析了它们可能如何影响临床应用。本综述旨在通过聚焦于恶性淋巴结相关挑战背景下的深度学习应用,填补文献空白,深入探讨其提高癌症治疗计划精度和效率的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03d3/12066500/476c29ecf107/fimmu-16-1526518-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验