Suppr超能文献

基于吩噻嗪的给体-受体聚合物作为电荷存储和太阳能转换的多功能材料。

Phenothiazine-Based Donor-Acceptor Polymers as Multifunctional Materials for Charge Storage and Solar Energy Conversion.

机构信息

Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany.

Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.

出版信息

Macromol Rapid Commun. 2024 Jan;45(1):e2200699. doi: 10.1002/marc.202200699. Epub 2022 Nov 23.

Abstract

The increasing energy demand for diverse applications requires new types of devices and materials. Multifunctional materials that can fulfill different roles are of high interest as they can allow fabricating devices that can both convert and store energy. Herein, organic donor-acceptor redox polymers that can function as charge storage materials in batteries and as donor materials in bulk heterojunction (BHJ) photovoltaic devices are investigated. Based on its reversible redox chemistry, phenothiazine is used as the main building block in the conjugated copolymer design and combined with diketopyrrolopyrrol and benzothiadiazole as electron-poor comonomers to shift the optical absorption into the visible region. The resulting polymers show excellent cycling stability as positive electrode materials in lithium-organic batteries at discharge potentials of 3.6-3.7 V versus Li/Li as well as good performances in BHJ solar cells with up to 1.9% power conversion efficiency. This study shows that the design of such multifunctional materials is possible, however, that it also faces challenges, as essential properties for good device function can lead to diametrically opposite requirements in materials design.

摘要

不断增长的能源需求需要新型的设备和材料。多功能材料能够满足不同的角色需求,因此受到高度关注,因为它们可以制造既能转换又能储存能量的设备。本文研究了可在电池中充当电荷存储材料以及在体异质结(BHJ)光伏器件中充当供体材料的有机给体-受体氧化还原聚合物。基于其可逆氧化还原化学,吩噻嗪被用作共轭共聚物设计的主要构建块,并与二酮吡咯并吡咯和苯并噻二唑结合作为缺电子共聚单体,将光学吸收转移到可见光区。所得聚合物在放电电位为 3.6-3.7 V 相对于 Li/Li 的锂有机电池中作为正极材料表现出优异的循环稳定性,以及在 BHJ 太阳能电池中高达 1.9%的功率转换效率。本研究表明,这种多功能材料的设计是可行的,但也面临着挑战,因为良好器件功能的基本特性可能会导致材料设计的要求截然相反。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验