Suppr超能文献

对具有独特信号特性的配体诱导脂质和蛋白质微结构域进行直接定量分析。

Direct quantification of ligand-induced lipid and protein microdomains with distinctive signaling properties.

作者信息

Wirth Daniel, Paul Michael D, Pasquale Elena B, Hristova Kalina

机构信息

Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218.

Program in Molecular Biophysics, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218.

出版信息

ChemSystemsChem. 2022 Sep;4(5). doi: 10.1002/syst.202200011. Epub 2022 Apr 26.

Abstract

Lipid rafts are ordered lipid domains that are enriched in saturated lipids, such as the ganglioside GM1. While lipid rafts are believed to exist in cells and to serve as signaling platforms through their enrichment in signaling components, they have not been directly observed in the plasma membrane without treatments that artificially cluster GM1 into large lattices. Here, we report that microscopic GM1-enriched domains can form, in the plasma membrane of live mammalian cells expressing the EphA2 receptor tyrosine kinase in response to its ligand ephrinA1-Fc. The GM1-enriched microdomains form concomitantly with EphA2-enriched microdomains. To gain insight into how plasma membrane heterogeneity controls signaling, we quantify the degree of EphA2 segregation and study initial EphA2 signaling steps in both EphA2-enriched and EphA2-depleted domains. By measuring dissociation constants, we demonstrate that the propensity of EphA2 to oligomerize is similar in EphA2-enriched and -depleted domains. However, surprisingly, EphA2 interacts preferentially with its downstream effector SRC in EphA2-depleted domains. The ability to induce microscopic GM1-enriched domains in live cells using a ligand for a transmembrane receptor will give us unprecedented opportunities to study the biophysical chemistry of lipid rafts.

摘要

脂筏是富含饱和脂质(如神经节苷脂GM1)的有序脂质结构域。虽然人们认为脂筏存在于细胞中,并通过富集信号成分作为信号平台,但在未经人工将GM1聚集成大晶格的处理情况下,它们尚未在质膜中被直接观察到。在此,我们报告,在表达EphA2受体酪氨酸激酶的活哺乳动物细胞的质膜中,响应其配体ephrinA1-Fc,可形成微观的富含GM1的结构域。富含GM1的微结构域与富含EphA2 的微结构域同时形成。为深入了解质膜异质性如何控制信号传导,我们量化了EphA2的分离程度,并研究了富含EphA2和缺乏EphA2的结构域中EphA2信号传导的初始步骤。通过测量解离常数,我们证明EphA2在富含EphA2和缺乏EphA2的结构域中寡聚的倾向相似。然而,令人惊讶的是,EphA2在缺乏EphA2的结构域中优先与其下游效应器SRC相互作用。利用跨膜受体的配体在活细胞中诱导微观的富含GM1的结构域的能力,将为我们研究脂筏的生物物理化学提供前所未有的机会。

相似文献

1
Direct quantification of ligand-induced lipid and protein microdomains with distinctive signaling properties.
ChemSystemsChem. 2022 Sep;4(5). doi: 10.1002/syst.202200011. Epub 2022 Apr 26.
5
EGF induces rapid reorganization of plasma membrane microdomains.
Commun Integr Biol. 2009 May;2(3):213-4. doi: 10.4161/cib.2.3.7877.
7
Lipid rafts as major platforms for signaling regulation in cancer.
Adv Biol Regul. 2015 Jan;57:130-46. doi: 10.1016/j.jbior.2014.10.003. Epub 2014 Oct 27.
8
Role for lipid rafts in regulating interleukin-2 receptor signaling.
Blood. 2001 Sep 1;98(5):1489-97. doi: 10.1182/blood.v98.5.1489.

引用本文的文献

1
Eph receptor signaling complexes in the plasma membrane.
Trends Biochem Sci. 2024 Dec;49(12):1079-1096. doi: 10.1016/j.tibs.2024.10.002. Epub 2024 Nov 12.
2
Limits on the accuracy of contact inhibition of locomotion.
Phys Rev E. 2024 May;109(5-1):054408. doi: 10.1103/PhysRevE.109.054408.
3
Investigations of membrane protein interactions in cells using fluorescence microscopy.
Curr Opin Struct Biol. 2024 Jun;86:102816. doi: 10.1016/j.sbi.2024.102816. Epub 2024 Apr 21.
4
Utility of FRET in studies of membrane protein oligomerization: The concept of the effective dissociation constant.
Biophys J. 2023 Oct 17;122(20):4113-4120. doi: 10.1016/j.bpj.2023.09.011. Epub 2023 Sep 21.

本文引用的文献

1
High-Content Imaging Platform to Discover Chemical Modulators of Plasma Membrane Rafts.
ACS Cent Sci. 2022 Mar 23;8(3):370-378. doi: 10.1021/acscentsci.1c01058. Epub 2022 Feb 21.
2
Loss of plasma membrane lipid asymmetry can induce ordered domain (raft) formation.
J Lipid Res. 2022 Jan;63(1):100155. doi: 10.1016/j.jlr.2021.100155. Epub 2021 Nov 26.
3
Oncogenic functions and therapeutic targeting of EphA2 in cancer.
Oncogene. 2021 Apr;40(14):2483-2495. doi: 10.1038/s41388-021-01714-8. Epub 2021 Mar 8.
4
Probing Membrane Protein Association Using Concentration-Dependent Number and Brightness.
Angew Chem Int Ed Engl. 2021 Mar 15;60(12):6503-6508. doi: 10.1002/anie.202010049. Epub 2021 Feb 4.
5
Targeting EphA2 in cancer.
J Hematol Oncol. 2020 Aug 18;13(1):114. doi: 10.1186/s13045-020-00944-9.
6
Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14978-14986. doi: 10.1073/pnas.2001119117. Epub 2020 Jun 17.
7
8
Lipid Rafts: Controversies Resolved, Mysteries Remain.
Trends Cell Biol. 2020 May;30(5):341-353. doi: 10.1016/j.tcb.2020.01.009. Epub 2020 Feb 20.
9
Osmotic-Tension-Induced Membrane Lateral Organization.
Langmuir. 2020 Mar 24;36(11):2937-2945. doi: 10.1021/acs.langmuir.9b03893. Epub 2020 Mar 16.
10
Membrane domains beyond the reach of microscopy.
J Lipid Res. 2020 May;61(5):592-594. doi: 10.1194/jlr.C120000693. Epub 2020 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验