Suppr超能文献

利用颅内脑电图和计算模型确定耐药性癫痫神经调节的靶点

Localizing targets for neuromodulation in drug-resistant epilepsy using intracranial EEG and computational model.

作者信息

Liu Yang, Li Chunsheng

机构信息

Department of Biomedical Engineering, School of Electrical Engineering, Shenyang University of Technology, Shenyang, China.

出版信息

Front Physiol. 2022 Oct 20;13:1015838. doi: 10.3389/fphys.2022.1015838. eCollection 2022.

Abstract

Neuromodulation has emerged as a promising technique for the treatment of epilepsy. The target for neuromodulation is critical for the effectiveness of seizure control. About 30% of patients with drug-resistant epilepsy (DRE) fail to achieve seizure freedom after surgical intervention. It is difficult to find effective brain targets for neuromodulation in these patients because brain regions are damaged during surgery. In this study, we propose a novel approach for localizing neuromodulatory targets, which uses intracranial EEG and multi-unit computational models to simulate the dynamic behavior of epileptic networks through external stimulation. First, we validate our method on a multivariate autoregressive model and compare nine different methods of constructing brain networks. Our results show that the directed transfer function with surrogate analysis achieves the best performance. Intracranial EEGs of 11 DRE patients are further analyzed. These patients all underwent surgery. In three seizure-free patients, the localized targets are concordant with the resected regions. For the eight patients without seizure-free outcome, the localized targets in three of them are outside the resected regions. Finally, we provide candidate targets for neuromodulation in these patients without seizure-free outcome based on virtual resected epileptic network. We demonstrate the ability of our approach to locate optimal targets for neuromodulation. We hope that our approach can provide a new tool for localizing patient-specific targets for neuromodulation therapy in DRE.

摘要

神经调节已成为一种治疗癫痫的有前景的技术。神经调节的靶点对于控制癫痫发作的有效性至关重要。约30%的耐药性癫痫(DRE)患者在手术干预后未能实现无癫痫发作。在这些患者中难以找到有效的神经调节脑靶点,因为手术过程中脑区会受到损伤。在本研究中,我们提出了一种定位神经调节靶点的新方法,该方法利用颅内脑电图和多单元计算模型通过外部刺激来模拟癫痫网络的动态行为。首先,我们在多元自回归模型上验证了我们的方法,并比较了构建脑网络的九种不同方法。我们的结果表明,带有替代分析的定向传递函数表现最佳。对11例DRE患者的颅内脑电图进行了进一步分析。这些患者均接受了手术。在3例无癫痫发作的患者中,定位的靶点与切除区域一致。对于8例无癫痫发作结果的患者,其中3例的定位靶点在切除区域之外。最后,我们基于虚拟切除的癫痫网络为这些无癫痫发作结果的患者提供了神经调节的候选靶点。我们展示了我们的方法定位神经调节最佳靶点的能力。我们希望我们的方法能够为在DRE中定位针对患者的神经调节治疗靶点提供一种新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d5/9632660/79d62ea97684/fphys-13-1015838-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验