Hebert Damon, Boonekamp Jeroen, Parrish Charles H, Ramasamy Karthik, Makarov Nikolay S, Castañeda Chloe, Schuddebeurs Lisanne, McDaniel Hunter, Bergren Matthew R
UbiQD, Inc., Los Alamos, NM, United States.
Delphy Improvement Centre, Bleiswijk, Netherlands.
Front Chem. 2022 Oct 20;10:988227. doi: 10.3389/fchem.2022.988227. eCollection 2022.
The spectral quality of sunlight reaching plants remains a path for optimization in greenhouse cultivation. Quantum dots represent a novel, emission-tunable luminescent material for optimizing the sunlight spectrum in greenhouses with minimal intensity loss, ultimately enabling improved light use efficiency of plant growth without requiring electricity. In this study, greenhouse films containing CuInS/ZnS quantum dots were utilized to absorb and convert ultraviolet and blue photons from sunlight to a photoluminescent emission centered at 600 nm. To analyze the effects of the quantum dot film spectrum on plant production, a 25-week tomato trial was conducted in Dutch glass greenhouses. Plants under the quantum dot film experienced a 14% reduction in overall daily light integral, resulting from perpendicular photosynthetically active radiation transmission of 85.3%, mainly due to reflection losses. Despite this reduction in intensity, the modified sunlight spectrum and light diffusion provided by the quantum dot film gave rise to 5.7% improved saleable production yield, nearly identical total fruiting biomass production, 23% higher light use efficiency (g/mol), 10% faster vegetative growth rate, and 36% reduced tomato waste compared to the control, which had no additional films. Based on this result, materials incorporating quantum dots show promise in enabling passive, electricity-free spectrum modification for improving crop production in greenhouse cultivation, but extensive controlled crop studies are needed to further validate their effectiveness.
到达植物的太阳光光谱质量仍是温室栽培中有待优化的一个方面。量子点是一种新型的、发射可调谐的发光材料,可在温室中以最小的强度损失优化太阳光光谱,最终在无需电力的情况下提高植物生长的光利用效率。在本研究中,含有铜铟硫/硫化锌量子点的温室薄膜被用于吸收太阳光中的紫外线和蓝光光子,并将其转换为中心波长为600纳米的光致发光发射。为了分析量子点薄膜光谱对植物产量的影响,在荷兰玻璃温室中进行了为期25周的番茄试验。量子点薄膜下的植物总体日光照积分降低了14%,这是由于垂直光合有效辐射透过率为85.3%,主要是反射损失所致。尽管强度有所降低,但量子点薄膜提供的经修改的太阳光光谱和光扩散使可销售产量提高了5.7%,总结果实生物量产量几乎相同,光利用效率(克/摩尔)提高了23%,营养生长速率加快了10%,与未使用额外薄膜的对照相比,番茄浪费减少了36%。基于这一结果,包含量子点的材料有望实现被动、无电的光谱修改,以提高温室栽培中的作物产量,但需要进行广泛的可控作物研究来进一步验证其有效性。