Erwin Johnson C, Colquhoun Daniel, Ruppar Daniel A, Vetter Sascha
Policy Evidence Research (Global Market Access), Merck & Co., Inc., Kenilworth, New Jersey, USA.
Customer Research, Frost & Sullivan, Toronto, Ontario, Canada.
JAMIA Open. 2022 Nov 2;5(4):ooac093. doi: 10.1093/jamiaopen/ooac093. eCollection 2022 Dec.
To gain insights into how data vendor companies (DVs), an important source of de-identified/anonymized licensed patient-related data (D/ALD) used in clinical informatics research in life sciences and the pharmaceutical industry, characterize, conduct, and communicate data quality assessments to researcher purchasers of D/ALD.
A qualitative study with interviews of DVs executives and decision-makers in data quality assessments ( = 12) and content analysis of interviews transcripts.
Data quality, from the perspective of DVs, is characterized by how it is defined, validated, and processed. DVs identify data quality as the main contributor to successful collaborations with life sciences/pharmaceutical research partners. Data quality feedback from clients provides the basis for DVs reviews and inspections of quality processes. DVs value customer interactions, view collaboration, shared common goals, mutual expertise, and communication related to data quality as success factors.
Data quality evaluation practices are important. However, no uniform DVs industry standards for data quality assessment were identified. DVs describe their orientation to data quality evaluation as a direct result of not only the complex nature of data sources, but also of techniques, processes, and approaches used to construct data sets. Because real-world data (RWD), eg, patient data from electronic medical records, is used for real-world evidence (RWE) generation, the use of D/ALD will expand and require refinement. The focus on (and rigor in) data quality assessment (particularly in research necessary to make regulatory decisions) will require more structure, standards, and collaboration between DVs, life sciences/pharmaceutical, informaticists, and RWD/RWE policy-making stakeholders.
深入了解数据供应商公司(DVs),这是生命科学和制药行业临床信息学研究中使用的去标识化/匿名化许可患者相关数据(D/ALD)的重要来源,如何对数据质量评估进行特征描述、开展及与D/ALD的研究购买者进行沟通。
一项定性研究,对DVs数据质量评估方面的高管和决策者进行访谈(n = 12),并对访谈记录进行内容分析。
从DVs的角度来看,数据质量的特征在于其定义、验证和处理方式。DVs将数据质量视为与生命科学/制药研究伙伴成功合作的主要因素。来自客户的数据质量反馈为DVs审查和检查质量流程提供了依据。DVs重视客户互动,将与数据质量相关的合作、共同目标、相互专业知识和沟通视为成功因素。
数据质量评估实践很重要。然而,未发现统一的DVs行业数据质量评估标准。DVs将其对数据质量评估的定位描述为不仅是数据源复杂性质的直接结果,也是构建数据集所使用的技术、流程和方法的直接结果。由于真实世界数据(RWD),例如来自电子病历的患者数据,被用于生成真实世界证据(RWE),D/ALD的使用将会扩大并需要完善。对数据质量评估的关注(以及严谨性)(特别是在做出监管决策所需的研究中)将需要DVs、生命科学/制药公司、信息学家以及RWD/RWE政策制定利益相关者之间更有条理、标准和协作。