Suppr超能文献

酒精使用障碍男性受试者概率性反转学习缺陷的计算分析

Computational analysis of probabilistic reversal learning deficits in male subjects with alcohol use disorder.

作者信息

Bağci Başak, Düsmez Selin, Zorlu Nabi, Bahtiyar Gökhan, Isikli Serhan, Bayrakci Adem, Heinz Andreas, Schad Daniel J, Sebold Miriam

机构信息

Department of Psychiatry, Katip Celebi University Ataturk Education and Research Hospital, İzmir, Turkey.

Department of Psychiatry, Midyat State Hospital, Mardin, Turkey.

出版信息

Front Psychiatry. 2022 Oct 19;13:960238. doi: 10.3389/fpsyt.2022.960238. eCollection 2022.

Abstract

BACKGROUND

Alcohol use disorder is characterized by perseverative alcohol use despite negative consequences. This hallmark feature of addiction potentially relates to impairments in behavioral flexibility, which can be measured by probabilistic reversal learning (PRL) paradigms. We here aimed to examine the cognitive mechanisms underlying impaired PRL task performance in patients with alcohol use disorder (AUDP) using computational models of reinforcement learning.

METHODS

Twenty-eight early abstinent AUDP and 27 healthy controls (HC) performed an extensive PRL paradigm. We compared conventional behavioral variables of choices (perseveration; correct responses) between groups. Moreover, we fitted Bayesian computational models to the task data to compare differences in latent cognitive variables including reward and punishment learning and choice consistency between groups.

RESULTS

AUDP and HC did not significantly differ with regard to direct perseveration rates after reversals. However, AUDP made overall less correct responses and specifically showed decreased win-stay behavior compared to HC. Interestingly, AUDP showed premature switching after no or little negative feedback but elevated proneness to stay when accumulation of negative feedback would make switching a more optimal option. Computational modeling revealed that AUDP compared to HC showed enhanced learning from punishment, a tendency to learn less from positive feedback and lower choice consistency.

CONCLUSION

Our data do not support the assumption that AUDP are characterized by increased perseveration behavior. Instead our findings provide evidence that enhanced negative reinforcement and decreased non-drug-related reward learning as well as diminished choice consistency underlie dysfunctional choice behavior in AUDP.

摘要

背景

酒精使用障碍的特征是尽管存在负面后果仍持续饮酒。成瘾的这一标志性特征可能与行为灵活性受损有关,行为灵活性可通过概率性逆向学习(PRL)范式进行测量。我们旨在使用强化学习计算模型,研究酒精使用障碍患者(AUDP)PRL任务表现受损背后的认知机制。

方法

28名早期戒酒的AUDP患者和27名健康对照者(HC)进行了广泛的PRL范式实验。我们比较了两组之间选择的传统行为变量(持续性;正确反应)。此外,我们将贝叶斯计算模型拟合到任务数据中,以比较潜在认知变量的差异,包括奖励和惩罚学习以及两组之间的选择一致性。

结果

在逆转后的直接持续性比率方面,AUDP和HC没有显著差异。然而,与HC相比,AUDP的总体正确反应较少,特别是赢留行为减少。有趣的是,AUDP在没有或几乎没有负面反馈后表现出过早切换,但当负面反馈积累会使切换成为更优选择时,其停留倾向增加。计算模型显示,与HC相比,AUDP从惩罚中学习的能力增强,从正面反馈中学习的倾向降低,选择一致性较低。

结论

我们的数据不支持AUDP以持续性行为增加为特征的假设。相反,我们的研究结果表明,增强的负强化、减少的非药物相关奖励学习以及降低的选择一致性是AUDP功能失调选择行为的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a5/9626515/49119e924dda/fpsyt-13-960238-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验