Suppr超能文献

计算强化学习、奖励(和惩罚)与精神疾病中的多巴胺

Computational reinforcement learning, reward (and punishment), and dopamine in psychiatric disorders.

作者信息

Liebenow Brittany, Jones Rachel, DiMarco Emily, Trattner Jonathan D, Humphries Joseph, Sands L Paul, Spry Kasey P, Johnson Christina K, Farkas Evelyn B, Jiang Angela, Kishida Kenneth T

机构信息

Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States.

Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.

出版信息

Front Psychiatry. 2022 Oct 20;13:886297. doi: 10.3389/fpsyt.2022.886297. eCollection 2022.

Abstract

In the DSM-5, psychiatric diagnoses are made based on self-reported symptoms and clinician-identified signs. Though helpful in choosing potential interventions based on the available regimens, this conceptualization of psychiatric diseases can limit basic science investigation into their underlying causes. The reward prediction error (RPE) hypothesis of dopamine neuron function posits that phasic dopamine signals encode the difference between the rewards a person expects and experiences. The computational framework from which this hypothesis was derived, temporal difference reinforcement learning (TDRL), is largely focused on reward processing rather than punishment learning. Many psychiatric disorders are characterized by aberrant behaviors, expectations, reward processing, and hypothesized dopaminergic signaling, but also characterized by suffering and the inability to change one's behavior despite negative consequences. In this review, we provide an overview of the RPE theory of phasic dopamine neuron activity and review the gains that have been made through the use of computational reinforcement learning theory as a framework for understanding changes in reward processing. The relative dearth of explicit accounts of punishment learning in computational reinforcement learning theory and its application in neuroscience is highlighted as a significant gap in current computational psychiatric research. Four disorders comprise the main focus of this review: two disorders of traditionally hypothesized hyperdopaminergic function, addiction and schizophrenia, followed by two disorders of traditionally hypothesized hypodopaminergic function, depression and post-traumatic stress disorder (PTSD). Insights gained from a reward processing based reinforcement learning framework about underlying dopaminergic mechanisms and the role of punishment learning (when available) are explored in each disorder. Concluding remarks focus on the future directions required to characterize neuropsychiatric disorders with a hypothesized cause of underlying dopaminergic transmission.

摘要

在《精神疾病诊断与统计手册》第五版(DSM - 5)中,精神疾病诊断是基于自我报告的症状和临床医生识别的体征做出的。尽管这有助于根据现有治疗方案选择潜在的干预措施,但这种对精神疾病的概念化可能会限制对其潜在病因的基础科学研究。多巴胺神经元功能的奖励预测误差(RPE)假说认为,阶段性多巴胺信号编码了一个人预期的奖励与实际经历的奖励之间的差异。该假说所源自的计算框架,即时间差分强化学习(TDRL),主要关注奖励处理而非惩罚学习。许多精神疾病的特征是异常行为、期望、奖励处理以及假设的多巴胺能信号异常,但也表现为痛苦以及尽管有负面后果却无法改变自己的行为。在本综述中,我们概述了阶段性多巴胺神经元活动的RPE理论,并回顾了通过使用计算强化学习理论作为理解奖励处理变化的框架所取得的进展。计算强化学习理论中对惩罚学习的明确阐述相对较少及其在神经科学中的应用被强调为当前计算精神病学研究中的一个重大差距。本综述的主要关注点包括四种疾病:两种传统上假设为多巴胺能功能亢进的疾病,即成瘾和精神分裂症,随后是两种传统上假设为多巴胺能功能减退的疾病,即抑郁症和创伤后应激障碍(PTSD)。在每种疾病中,我们探讨了从基于奖励处理的强化学习框架中获得的关于潜在多巴胺能机制以及惩罚学习作用(如有)的见解。结语聚焦于表征具有潜在多巴胺能传递假设病因的神经精神疾病所需的未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9443/9630918/1a55d428a7f3/fpsyt-13-886297-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验