Suppr超能文献

使用计算流体动力学预测格林生理状态下Fontan手术的血流动力学表现:十个特定患者病例

Predicting Hemodynamic Performance of Fontan Operation for Glenn Physiology using Computational Fluid Dynamics: Ten Patient-specific Cases.

作者信息

Javadi Elahe, Laudenschlager Sebastian, Kheyfets Vitaly, Di Maria Michael, Stone Matthew, Jamali Safa, Powell Andrew J, Moghari Mehdi H

机构信息

Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, USA.

School of Medicine, University of Colorado Aurora, and Department of Radiology, Children's Hospital Colorado, Aurora, CO, USA.

出版信息

J Clin Images Med Case Rep. 2022 Jun;3(6). doi: 10.52768/2766-7820/1916. Epub 2022 Jun 29.

Abstract

Single ventricle hearts have only one ventricle that can pump blood effectively and the treatment requires three stages of operations to reconfigure the heart and circulatory system. At the second stage, Glenn procedure is performed to connect superior vena cava (SVC) to the pulmonary arteries (PA). For the third and most complex operation, called Fontan, an extracardiac conduit is used to connect inferior vena cava (IVC) to the PL and thereafter no deoxygenated blood goes to the heart. Predicting Hemodynamic Performance of Fontan Operation using computational fluid dynamics (CFD) is hypothesized to improve outcomes and optimize this treatment planning in children with single-ventricle heart disease. An important reason for this surgical planning is to reduce the development of pulmonary arteriovenous malformations (PAVM) and the need to perform Fontan revisions. The purpose of this study was to develop amodel for Fontan surgical planning and use this model to compare blood circulation in two designed graft types of Fontan operation known as T-shape and Y-graft. The functionality of grafts was compared in terms of power loss (PL) and hepatic flow distribution (HFD), a known factor in PAVM development. To perform this study, ten single-ventricle children with Glenn physiology were included and a CFD model was developed to estimate the blood flow circulation to the left and right pulmonary arteries. The estimated blood flow by CFD was compared with that measured by cardiovascular magnetic resonance. Results showed that there was an excellent agreement between the net blood flow in the right and left pulmonary arteries computed by CFD and CMR (ICC= 0.98, P-value ≥0.21). After validating the accuracy of each CFD model, Fontan operations using T-shape and Y-graft conduits were performed for each patient and the developed CFD model was used to predict the post-surgical PL and HFD. We found that the PL in the Y-graft was significantly lower than in the T-shape (P-value ≤0.001) and HFD was significantly better balanced in Y-graft compared to the T-shape (P-value=0.004).

摘要

单心室心脏只有一个能够有效泵血的心室,其治疗需要三个阶段的手术来重新构建心脏和循环系统。在第二阶段,进行格林手术,将上腔静脉(SVC)与肺动脉(PA)相连。对于第三个也是最复杂的手术,即方坦手术,使用心外管道将下腔静脉(IVC)与肺动脉相连,此后脱氧血液不再进入心脏。假设使用计算流体动力学(CFD)预测方坦手术的血流动力学性能可改善单心室心脏病患儿的治疗结果并优化治疗方案。这种手术规划的一个重要原因是减少肺动静脉畸形(PAVM)的发生以及进行方坦手术修正的必要性。本研究的目的是开发一种用于方坦手术规划的模型,并使用该模型比较两种设计的方坦手术移植物类型(T形和Y形移植物)中的血液循环。根据功率损失(PL)和肝血流分布(HFD)(PAVM发生的一个已知因素)对方形移植物的功能进行了比较。为进行这项研究,纳入了10名具有格林生理特征的单心室儿童,并开发了一个CFD模型来估计流向左右肺动脉的血流循环。将CFD估计的血流与心血管磁共振测量的血流进行比较。结果表明,CFD和CMR计算的左右肺动脉净血流之间存在极好的一致性(ICC = 0.98,P值≥0.21)。在验证每个CFD模型的准确性之后,为每位患者进行了使用T形和Y形移植物管道的方坦手术,并使用开发的CFD模型预测术后的PL和HFD。我们发现Y形移植物中的PL显著低于T形移植物(P值≤0.001),并且与T形移植物相比,Y形移植物中的HFD平衡明显更好(P值 = 0.004)。

相似文献

2
Impact of Age-related change in Caval Flow Ratio on Hepatic Flow Distribution in Fontan.
medRxiv. 2023 Sep 8:2023.09.06.23295166. doi: 10.1101/2023.09.06.23295166.
3
Estimation of pulmonary vascular resistance for Glenn physiology.
PLoS One. 2024 Jul 26;19(7):e0307890. doi: 10.1371/journal.pone.0307890. eCollection 2024.
4
Hemodynamic Impact of Superior Vena Cava Placement in the Y-Graft Fontan Connection.
Ann Thorac Surg. 2016 Jan;101(1):183-9. doi: 10.1016/j.athoracsur.2015.07.012. Epub 2015 Oct 1.
5
Postsurgical comparison of pulsatile hemodynamics in five unique total cavopulmonary connections: identifying ideal connection strategies.
Ann Thorac Surg. 2013 Oct;96(4):1398-1404. doi: 10.1016/j.athoracsur.2013.05.035. Epub 2013 Jul 30.
6
In vitro measurement of hepatic flow distribution in Fontan vascular conduits: Towards rapid validation techniques.
J Biomech. 2022 May;137:111092. doi: 10.1016/j.jbiomech.2022.111092. Epub 2022 Apr 12.
9
Impact of Age-Related Change in Caval Flow Ratio on Hepatic Flow Distribution in the Fontan Circulation.
Circ Cardiovasc Imaging. 2024 Apr;17(4):e016104. doi: 10.1161/CIRCIMAGING.123.016104. Epub 2024 Apr 3.
10
Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study.
J Thorac Cardiovasc Surg. 2012 May;143(5):1086-97. doi: 10.1016/j.jtcvs.2011.06.042. Epub 2011 Sep 29.

引用本文的文献

1
Applications of Computational Fluid Dynamics in Congenital Heart Disease: A Review.
J Cardiovasc Dev Dis. 2025 Feb 13;12(2):70. doi: 10.3390/jcdd12020070.
2
Estimation of pulmonary vascular resistance for Glenn physiology.
PLoS One. 2024 Jul 26;19(7):e0307890. doi: 10.1371/journal.pone.0307890. eCollection 2024.
3
Bilateral bidirectional cavopulmonary connection: a review of surgical techniques and clinical implications.
Transl Pediatr. 2024 May 31;13(5):814-823. doi: 10.21037/tp-24-28. Epub 2024 May 23.

本文引用的文献

1
Fluid-Structure Interaction Simulation of an Intra-Atrial Fontan Connection.
Biology (Basel). 2020 Nov 24;9(12):412. doi: 10.3390/biology9120412.
2
Role of surgeon intuition and computer-aided design in Fontan optimization: A computational fluid dynamics simulation study.
J Thorac Cardiovasc Surg. 2020 Jul;160(1):203-212.e2. doi: 10.1016/j.jtcvs.2019.12.068. Epub 2020 Jan 8.
3
Y-graft modification to the Fontan procedure: Increasingly balanced flow over time.
J Thorac Cardiovasc Surg. 2020 Feb;159(2):652-661. doi: 10.1016/j.jtcvs.2019.06.063. Epub 2019 Jul 10.
4
The first cohort of prospective Fontan surgical planning patients with follow-up data: How accurate is surgical planning?
J Thorac Cardiovasc Surg. 2019 Mar;157(3):1146-1155. doi: 10.1016/j.jtcvs.2018.11.102. Epub 2018 Dec 11.
5
Fontan Revision: Presurgical Planning Using Four-Dimensional (4D) Flow and Three-Dimensional (3D) Printing.
World J Pediatr Congenit Heart Surg. 2019 Mar;10(2):245-249. doi: 10.1177/2150135118799641. Epub 2019 Jan 10.
6
Simulation of aortopulmonary collateral flow in Fontan patients for use in prediction of interventional outcomes.
Clin Physiol Funct Imaging. 2018 Jul;38(4):622-629. doi: 10.1111/cpf.12457. Epub 2017 Aug 7.
7
Effect of Fontan geometry on exercise haemodynamics and its potential implications.
Heart. 2017 Nov;103(22):1806-1812. doi: 10.1136/heartjnl-2016-310855. Epub 2017 May 18.
8
Pulsatile blood flow in total cavopulmonary connection: a comparison between Y-shaped and T-shaped geometry.
Med Biol Eng Comput. 2017 Feb;55(2):213-224. doi: 10.1007/s11517-016-1499-4. Epub 2016 Apr 23.
9
Prospective heart tracking for whole-heart magnetic resonance angiography.
Magn Reson Med. 2017 Feb;77(2):759-765. doi: 10.1002/mrm.26117. Epub 2016 Feb 4.
10
Hemodynamic Impact of Superior Vena Cava Placement in the Y-Graft Fontan Connection.
Ann Thorac Surg. 2016 Jan;101(1):183-9. doi: 10.1016/j.athoracsur.2015.07.012. Epub 2015 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验