Suppr超能文献

带时间窗分配的应急物流网络优化

Emergency logistics network optimization with time window assignment.

作者信息

Wang Yong, Wang Xiuwen, Fan Jianxin, Wang Zheng, Zhen Lu

机构信息

School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China.

School of Management, Shanghai University, Shanghai 200444, China.

出版信息

Expert Syst Appl. 2023 Mar 15;214:119145. doi: 10.1016/j.eswa.2022.119145. Epub 2022 Oct 31.

Abstract

During natural disasters or accidents, an emergency logistics network aims to ensure the distribution of relief supplies to victims in time and efficiently. When the coronavirus disease 2019 (COVID-19) emerged, the government closed the outbreak areas to control the risk of transmission. The closed areas were divided into high-risk and middle-/low-risk areas, and travel restrictions were enforced in the different risk areas. The distribution of daily essential supplies to residents in the closed areas became a major challenge for the government. This study introduces a new variant of the vehicle routing problem with travel restrictions in closed areas called the two-echelon emergency vehicle routing problem with time window assignment (2E-EVRPTWA). 2E-EVRPTWA involves transporting goods from distribution centers (DCs) to satellites in high-risk areas in the first echelon and delivering goods from DCs or satellites to customers in the second echelon. Vehicle sharing and time window assignment (TWA) strategies are applied to optimize the transportation resource configuration and improve the operational efficiency of the emergency logistics network. A tri-objective mathematical model for 2E-EVRPTWA is also constructed to minimize the total operating cost, total delivery time, and number of vehicles. A multi-objective adaptive large neighborhood search with split algorithm (MOALNS-SA) is proposed to obtain the Pareto optimal solution for 2E-EVRPTWA. The split algorithm (SA) calculates the objective values associated with each solution and assigns multiple trips to shared vehicles. A non-dominated sorting strategy is used to retain the optimal labels obtained with the SA algorithm and evaluate the quality of the multi-objective solution. The TWA strategy embedded in MOALNS-SA assigns appropriate candidate time windows to customers. The proposed MOALNS-SA produces results that are comparable with the CPLEX solver and those of the self-learning non-dominated sorting genetic algorithm-II, multi-objective ant colony algorithm, and multi-objective particle swarm optimization algorithm for 2E-EVRPTWA. A real-world COVID-19 case study from Chongqing City, China, is performed to test the performance of the proposed model and algorithm. This study helps the government and logistics enterprises design an efficient, collaborative, emergency logistics network, and promote the healthy and sustainable development of cities.

摘要

在自然灾害或事故期间,应急物流网络旨在确保救援物资及时、高效地分发给受灾群众。2019年冠状病毒病(COVID-19)出现后,政府封锁了疫情爆发地区以控制传播风险。封锁区域分为高风险区和中/低风险区,不同风险区域实施了出行限制。向封锁区域内的居民分发日常必需品成为政府面临的一项重大挑战。本研究引入了一种封闭区域内有出行限制的车辆路径问题的新变体,称为带时间窗分配的两级应急车辆路径问题(2E-EVRPTWA)。2E-EVRPTWA包括在第一级将货物从配送中心(DC)运输到高风险区域的卫星点,并在第二级将货物从DC或卫星点运送给客户。应用车辆共享和时间窗分配(TWA)策略来优化运输资源配置,提高应急物流网络的运营效率。还构建了一个用于2E-EVRPTWA的三目标数学模型,以最小化总运营成本、总交付时间和车辆数量。提出了一种带分裂算法的多目标自适应大邻域搜索算法(MOALNS-SA)来获得2E-EVRPTWA的帕累托最优解。分裂算法(SA)计算与每个解相关的目标值,并为共享车辆分配多个行程。使用非支配排序策略来保留通过SA算法获得的最优标签,并评估多目标解的质量。嵌入MOALNS-SA的TWA策略为客户分配合适的候选时间窗。所提出的MOALNS-SA产生的结果与CPLEX求解器以及针对2E-EVRPTWA的自学习非支配排序遗传算法-II、多目标蚁群算法和多目标粒子群优化算法的结果具有可比性。对中国重庆市的一个实际COVID-19案例进行了研究,以测试所提出模型和算法的性能。本研究有助于政府和物流企业设计一个高效、协作的应急物流网络,并促进城市的健康和可持续发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23a/9621592/eb86aa8d4272/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验