Smith Daniel R, Caban-Rivera Diego A, McGarry Matthew D J, Williams L Tyler, McIlvain Grace, Okamoto Ruth J, Van Houten Elijah E W, Bayly Philip V, Paulsen Keith D, Johnson Curtis L
Department of Biomedical Engineering, University of Delaware, Newark DE 19711.
Thayer School of Engineering, Dartmouth College, Hanover NH 03755.
Brain Multiphys. 2022;3. doi: 10.1016/j.brain.2022.100051. Epub 2022 Jun 27.
Magnetic resonance elastography (MRE) is an MRI technique for imaging the mechanical properties of brain in vivo, and has shown differences in properties between neuroanatomical regions and sensitivity to aging, neurological disorders, and normal brain function. Past MRE studies investigating these properties have typically assumed the brain is mechanically isotropic, though the aligned fibers of white matter suggest an anisotropic material model should be considered for more accurate parameter estimation. Here we used a transversely isotropic, nonlinear inversion algorithm (TI-NLI) and multiexcitation MRE to estimate the anisotropic material parameters of individual white matter tracts in healthy young adults. We found significant differences between individual tracts for three recovered anisotropic parameters: substrate shear stiffness, (range: 2.57 - 3.02 kPa), shear anisotropy, (range: -0.026 - 0.164), and tensile anisotropy, (range: 0.559 - 1.049). Additionally, we demonstrated the repeatability of these parameter estimates in terms of lower variability of repeated measures in a single subject relative to variability in our sample population. Further, we observed significant differences in anisotropic mechanical properties between segments of the corpus callosum (genu, body, and splenium), which is expected based on differences in axonal microstructure. This study shows the ability of MRE with TI-NLI to estimate anisotropic mechanical properties of white matter and presents reference properties for tracts throughout the healthy brain.
磁共振弹性成像(MRE)是一种用于在体成像大脑机械特性的MRI技术,已显示出神经解剖区域之间的特性差异以及对衰老、神经系统疾病和正常脑功能的敏感性。过去研究这些特性的MRE研究通常假定大脑在机械上是各向同性的,尽管白质中排列的纤维表明应考虑采用各向异性材料模型以进行更准确的参数估计。在此,我们使用横向各向同性的非线性反演算法(TI-NLI)和多激发MRE来估计健康年轻成年人个体白质束的各向异性材料参数。我们发现,对于三个恢复的各向异性参数,各白质束之间存在显著差异:基底剪切刚度,(范围:2.57 - 3.02千帕)、剪切各向异性,(范围:-0.026 - 0.164)和拉伸各向异性,(范围:0.559 - 1.049)。此外,我们通过单个受试者重复测量的变异性低于我们样本总体的变异性,证明了这些参数估计的可重复性。此外,我们观察到胼胝体各段(膝部、体部和压部)之间在各向异性机械特性上存在显著差异,基于轴突微观结构的差异,这是预期的。本研究展示了采用TI-NLI的MRE估计白质各向异性机械特性的能力,并给出了整个健康大脑白质束的参考特性。