Suppr超能文献

一种结合机器学习模型的两阶段混合基因选择算法,用于预测颅内动脉瘤的破裂状态。

A two-stage hybrid gene selection algorithm combined with machine learning models to predict the rupture status in intracranial aneurysms.

作者信息

Li Qingqing, Wang Peipei, Yuan Jinlong, Zhou Yunfeng, Mei Yaxin, Ye Mingquan

机构信息

School of Medical Information, Wannan Medical College, Wuhu, Anhui, China.

Research Center of Health Big Data Mining and Applications, Wannan Medical College, Wuhu, Anhui, China.

出版信息

Front Neurosci. 2022 Oct 20;16:1034971. doi: 10.3389/fnins.2022.1034971. eCollection 2022.

Abstract

An IA is an abnormal swelling of cerebral vessels, and a subset of these IAs can rupture causing aneurysmal subarachnoid hemorrhage (aSAH), often resulting in death or severe disability. Few studies have used an appropriate method of feature selection combined with machine learning by analyzing transcriptomic sequencing data to identify new molecular biomarkers. Following gene ontology (GO) and enrichment analysis, we found that the distinct status of IAs could lead to differential innate immune responses using all 913 differentially expressed genes, and considering that there are numerous irrelevant and redundant genes, we propose a mixed filter- and wrapper-based feature selection. First, we used the Fast Correlation-Based Filter (FCBF) algorithm to filter a large number of irrelevant and redundant genes in the raw dataset, and then used the wrapper feature selection method based on the he Multi-layer Perceptron (MLP) neural network and the Particle Swarm Optimization (PSO), accuracy (ACC) and mean square error (MSE) were then used as the evaluation criteria. Finally, we constructed a novel 10-gene signature (YIPF1, RAB32, WDR62, ANPEP, LRRCC1, AADAC, GZMK, WBP2NL, PBX1, and TOR1B) by the proposed two-stage hybrid algorithm FCBF-MLP-PSO and used different machine learning models to predict the rupture status in IAs. The highest ACC value increased from 0.817 to 0.919 (12.5% increase), the highest area under ROC curve (AUC) value increased from 0.87 to 0.94 (8.0% increase), and all evaluation metrics improved by approximately 10% after being processed by our proposed gene selection algorithm. Therefore, these 10 informative genes used to predict rupture status of IAs can be used as complements to imaging examinations in the clinic, meanwhile, this selected gene signature also provides new targets and approaches for the treatment of ruptured IAs.

摘要

颅内动脉瘤(IA)是脑血管的异常肿胀,其中一部分IA会破裂,导致动脉瘤性蛛网膜下腔出血(aSAH),常导致死亡或严重残疾。很少有研究通过分析转录组测序数据,采用合适的特征选择方法并结合机器学习来识别新的分子生物标志物。经过基因本体(GO)和富集分析,我们发现利用所有913个差异表达基因,IA的不同状态会导致不同的先天性免疫反应,并且考虑到存在大量不相关和冗余的基因,我们提出了一种基于混合过滤和包装的特征选择方法。首先,我们使用基于快速相关性的过滤(FCBF)算法在原始数据集中过滤大量不相关和冗余的基因,然后使用基于多层感知器(MLP)神经网络和粒子群优化(PSO)的包装特征选择方法,以准确率(ACC)和均方误差(MSE)作为评估标准。最后,我们通过提出的两阶段混合算法FCBF-MLP-PSO构建了一个新的10基因特征(YIPF1、RAB32、WDR62、ANPEP、LRRCC1、AADAC、GZMK、WBP2NL、PBX1和TOR1B),并使用不同的机器学习模型来预测IA的破裂状态。最高ACC值从0.817提高到0.919(增加了12.5%),最高ROC曲线下面积(AUC)值从0.87提高到0.94(增加了8.0%),并且在经过我们提出的基因选择算法处理后,所有评估指标均提高了约10%。因此,这些用于预测IA破裂状态的10个信息基因可作为临床影像检查的补充,同时,这种选定的基因特征也为破裂IA的治疗提供了新的靶点和方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b1f/9631203/72004547c1f8/fnins-16-1034971-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验