Kim Dong Young, Lee Geonhee, Lee Gil Yong, Kim Jungpil, Jeon Kwangu, Kim Keun Soo
Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON) 110-11 Banryong-ro, Deokjin-gu Jeonju 54852 Republic of Korea
Department of Physics, Graphene Research Institute and GRI-TPC International Research Centre, Sejong University Seoul 05006 Republic of Korea
Nanoscale Adv. 2022 Sep 19;4(21):4570-4578. doi: 10.1039/d2na00220e. eCollection 2022 Oct 25.
A low interfacial contact resistance is a challenge in polymer nanocomposites based on conductive nanomaterials for high-performance wearable electrode applications. Herein, a polydimethylsiloxane (PDMS)-based flexible nanocomposite incorporating high-conductivity 1D single-walled carbon nanotubes (SWCNTs) and 2D reduced graphene oxide (r-GO) was developed for high-performance electrocardiogram (ECG) wearable electrodes. A PDMS-SWCNT (P-SW; type I) nanocomposite containing only SWCNTs (2 wt%), exhibited rough and non-uniform surface morphology owing to the strong bundling effect of as-grown SWCNTs and randomly entangled aggregate structures and because of inefficient vacuum degassing (, = 1871 Ω). In contrast, owing to the hybrid structure of the SWCNTs (1 wt%) and r-GO (1 wt%), the PDMS-SWCNTs/r-GO (P-SW/r-GO; type II) nanocomposite exhibited uniform surface characteristics and low contact resistance (, = 63 Ω) through the formation of hybrid and long conducting pathways. The optimized nanocomposite (P-SW/r-GO/f; type III) possessed a fabric-assisted structure that enabled tunable and efficient vacuum degassing and curing conditions. Additionally, a long and wide conducting pathway was formed through more uniform and dense interconnected structures, and the contact resistance was drastically reduced (, = 15 Ω). The performance of the electrodes fabricated using the optimized nanocomposites was the same or higher than that of commercial Ag/AgCl gel electrodes during real-time measurement for ECG Bluetooth monitoring. The developed high-performance hybrid conducting polymer electrodes are expected to contribute significantly to the expansion of the application scope of wearable electronic devices and wireless personal health monitoring systems.
对于基于导电纳米材料的聚合物纳米复合材料在高性能可穿戴电极应用中而言,低界面接触电阻是一项挑战。在此,我们开发了一种基于聚二甲基硅氧烷(PDMS)的柔性纳米复合材料,其包含高导电性的一维单壁碳纳米管(SWCNT)和二维还原氧化石墨烯(r-GO),用于高性能心电图(ECG)可穿戴电极。仅含有SWCNT(2 wt%)的PDMS-SWCNT(P-SW;I型)纳米复合材料,由于生长态SWCNT的强聚集效应和随机缠结的聚集体结构,以及真空脱气效率低下,呈现出粗糙且不均匀的表面形态(,= 1871 Ω)。相比之下,由于SWCNT(1 wt%)和r-GO(1 wt%)的混合结构,PDMS-SWCNTs/r-GO(P-SW/r-GO;II型)纳米复合材料通过形成混合且长的导电通路,呈现出均匀的表面特性和低接触电阻(,= 63 Ω)。优化后的纳米复合材料(P-SW/r-GO/f;III型)具有织物辅助结构,能够实现可调谐且高效的真空脱气和固化条件。此外,通过更均匀且致密的相互连接结构形成了长且宽的导电通路,接触电阻大幅降低(,= 15 Ω)。在用于ECG蓝牙监测的实时测量过程中,使用优化后的纳米复合材料制备的电极性能与商用Ag/AgCl凝胶电极相同或更高。所开发的高性能混合导电聚合物电极有望为可穿戴电子设备和无线个人健康监测系统应用范围的扩展做出重大贡献。