Suppr超能文献

多模态 MRI 放射组学和机器学习在预测分期肝纤维化和分级炎症活动中的价值。

Value of multimodal MRI radiomics and machine learning in predicting staging liver fibrosis and grading inflammatory activity.

机构信息

Academy of Medical Sciences, the People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.

Heart Center of Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China.

出版信息

Br J Radiol. 2023 Jan 1;96(1141):20220512. doi: 10.1259/bjr.20220512. Epub 2022 Nov 21.

Abstract

OBJECTIVE

To evaluate the value of radiomics models created based on non-contrast enhanced weighted (W) and W fat-saturated (WFS) images for staging hepatic fibrosis (HF) and grading inflammatory activity.

METHODS AND MATERIALS

Data of 280 patients with pathologically confirmed HF and 48 healthy volunteers were included. The participants were divided into the training set and the test set at the proportion of 4:1 by the random seed method. We used the Pyradiomics software to extract radiomics features, and then use the least absolute shrinkage and selection operator to select the optimal subset. Finally, we used the stochastic gradient descent classifier to build the prediction models. DeLong test was used to compare the diagnostic performance of the models. Receiver operating characteristics was used to evaluate the prediction ability of the models.

RESULTS

The diagnostic efficiency of the models based on W & WFS images were the highest (all < 0.05). When discriminating significant fibrosis (≥ F2), there were significant differences in the AUCs between the machine learning models based on W and WFS images ( < 0.05), but there were no significant differences in area under the receiver operating characteristic curves between the two models in other groups (all > 0.05).

CONCLUSION

The radiomics models built on W and WFS images are effective in assessing HF and inflammatory activity.

ADVANCES IN KNOWLEDGE

Based on conventional MR sequences that are readily available in the clinic, namely unenhanced W and W images. Radiomics can be used for diagnosis and differential diagnosis of liver fibrosis staging and inflammatory activity grading.

摘要

目的

评估基于平扫加权(W)和 W 脂肪饱和(WFS)图像创建的放射组学模型在肝纤维化(HF)分期和炎症活动分级中的价值。

方法和材料

纳入了 280 例经病理证实的 HF 患者和 48 例健康志愿者的数据。采用随机种子法按 4:1 的比例将参与者分为训练集和测试集。我们使用 Pyradiomics 软件提取放射组学特征,然后使用最小绝对收缩和选择算子选择最佳子集。最后,我们使用随机梯度下降分类器构建预测模型。采用 DeLong 检验比较模型的诊断性能。采用受试者工作特征曲线评估模型的预测能力。

结果

基于 W 和 WFS 图像的模型的诊断效率最高(均<0.05)。在鉴别显著纤维化(≥F2)时,基于 W 和 WFS 图像的机器学习模型的 AUC 之间存在显著差异(均<0.05),但在其他组中,两个模型的曲线下面积之间无显著差异(均>0.05)。

结论

基于 W 和 WFS 图像构建的放射组学模型在评估 HF 和炎症活动方面具有有效性。

知识进展

基于临床中易于获得的常规磁共振序列,即平扫 W 和 WFS 图像,放射组学可用于肝纤维化分期和炎症活动分级的诊断和鉴别诊断。

相似文献

1
Value of multimodal MRI radiomics and machine learning in predicting staging liver fibrosis and grading inflammatory activity.
Br J Radiol. 2023 Jan 1;96(1141):20220512. doi: 10.1259/bjr.20220512. Epub 2022 Nov 21.
2
[Development of a grading diagnostic model for schistosomiasis-induced liver fibrosis based on radiomics and clinical laboratory indicators].
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2024 Jun 7;36(3):251-258. doi: 10.16250/j.32.1374.2024110.
4
MRI-based radiomics features for the non-invasive prediction of FIGO stage in cervical carcinoma: A multi-center study.
Magn Reson Imaging. 2024 Jul;110:170-175. doi: 10.1016/j.mri.2023.11.012. Epub 2023 Nov 29.
7
Multiparametric ultrasomics of significant liver fibrosis: A machine learning-based analysis.
Eur Radiol. 2019 Mar;29(3):1496-1506. doi: 10.1007/s00330-018-5680-z. Epub 2018 Sep 3.
8
Radiomics Approaches for Predicting Liver Fibrosis With Nonenhanced T -Weighted Imaging: Comparison of Different Radiomics Models.
J Magn Reson Imaging. 2021 Apr;53(4):1080-1089. doi: 10.1002/jmri.27391. Epub 2020 Oct 12.
9
Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis.
Eur Radiol. 2020 May;30(5):2973-2983. doi: 10.1007/s00330-019-06595-w. Epub 2020 Jan 21.

引用本文的文献

1
AI in Hepatology: Revolutionizing the Diagnosis and Management of Liver Disease.
J Clin Med. 2024 Dec 22;13(24):7833. doi: 10.3390/jcm13247833.
2
3
Staging liver fibrosis: comparison of radiomics model and fusion model based on multiparametric MRI in patients with chronic liver disease.
Abdom Radiol (NY). 2024 Apr;49(4):1165-1174. doi: 10.1007/s00261-023-04142-2. Epub 2024 Jan 14.
4
Advances in application of novel magnetic resonance imaging technologies in liver disease diagnosis.
World J Gastroenterol. 2023 Jul 28;29(28):4384-4396. doi: 10.3748/wjg.v29.i28.4384.

本文引用的文献

1
Use of Texture Analysis on Noncontrast MRI in Classification of Early Stage of Liver Fibrosis.
Can J Gastroenterol Hepatol. 2021 Mar 18;2021:6677821. doi: 10.1155/2021/6677821. eCollection 2021.
2
Noninvasive DW-MRI metrics for staging hepatic fibrosis and grading inflammatory activity in patients with chronic hepatitis B.
Abdom Radiol (NY). 2021 May;46(5):1864-1875. doi: 10.1007/s00261-020-02801-2. Epub 2020 Oct 19.
4
Whole-Liver Apparent Diffusion Coefficient Histogram Analysis for the Diagnosis and Staging of Liver Fibrosis.
J Magn Reson Imaging. 2020 Jun;51(6):1745-1754. doi: 10.1002/jmri.26987. Epub 2019 Nov 15.
6
Magnetic Resonance Elastography of Liver: Current Update.
Top Magn Reson Imaging. 2018 Oct;27(5):319-333. doi: 10.1097/RMR.0000000000000177.
7
Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues.
Mol Aspects Med. 2019 Feb;65:37-55. doi: 10.1016/j.mam.2018.09.002. Epub 2018 Sep 13.
8
Regression of human cirrhosis: an update, 18 years after the pioneering article by Wanless et al.
Virchows Arch. 2018 Jul;473(1):15-22. doi: 10.1007/s00428-018-2340-2. Epub 2018 Mar 27.
9
Computational Radiomics System to Decode the Radiographic Phenotype.
Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.
10
Sparse Learning with Stochastic Composite Optimization.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1223-1236. doi: 10.1109/TPAMI.2016.2578323. Epub 2016 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验