Hu Kai, Wang Xiaofang, Li Tanping
School of Physics, Xidian University, Xi'an 710071, People's Republic of China.
J Phys Chem B. 2022 Nov 17;126(45):9168-9175. doi: 10.1021/acs.jpcb.2c05012. Epub 2022 Nov 7.
We investigate the molecular origin of the fluorescence Stokes shift in an aqueous liquid. By examining the speed of energy change, the solvation response function is explicitly projected onto the translational and rotational motions of water molecules for both nonequilibrium relaxation and equilibrium fluctuations. Molecular dynamics simulations of a tryptophan solution show that these two processes have highly consistent dynamics, not only for the total response function but also for the decomposed components in terms of specific molecular movements. We found that the rotational mode governs the relaxation of the Stokes shift, whereas the translational mode contributes non-negligibly with slower dynamics. This consistency implies the similarity of the underlying translational and rotational movements of water molecules as the system is far away from and at equilibrium, supporting the validity of the linear response theory at the molecular level. The decomposition methodology is also applicable to a rigid solvent.
我们研究了水性液体中荧光斯托克斯位移的分子起源。通过检查能量变化的速度,溶剂化响应函数被明确地投影到水分子的平动和转动运动上,用于非平衡弛豫和平衡涨落。色氨酸溶液的分子动力学模拟表明,这两个过程具有高度一致的动力学,不仅对于总响应函数,而且对于特定分子运动方面的分解成分也是如此。我们发现,转动模式控制着斯托克斯位移的弛豫,而平动模式以较慢的动力学贡献不可忽略。这种一致性意味着,当系统远离平衡和处于平衡时,水分子潜在的平动和转动运动具有相似性,这支持了线性响应理论在分子水平上的有效性。这种分解方法也适用于刚性溶剂。