文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于文章、被引参考文献和引用文献来源,使用社会网络分析比较 3 位高产作者的研究领域。

A comparison of 3 productive authors' research domains based on sources from articles, cited references and citing articles using social network analysis.

机构信息

Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan.

Department of Geriatrics and Gerontology, Chi-Mei Medical Center, Tainan, Taiwan.

出版信息

Medicine (Baltimore). 2022 Nov 4;101(44):e31335. doi: 10.1097/MD.0000000000031335.


DOI:10.1097/MD.0000000000031335
PMID:36343020
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9646507/
Abstract

BACKGROUND: An individual's research domain (RD) can be determined from objective publication data (e.g., medical subject headings and Medical Subject Headings (MeSH) terms) by performing social network analysis. Bibliographic coupling (such as cocitation) is a similarity metric that relies on citation analysis to determine the similarity in RD between 2 articles. This study compared RD consistency between articles as well as their cited references and citing articles (ARCs). METHODS: A total of 1388 abstracts were downloaded from PubMed and authored by 3 productive authors. Based on the top 3 clusters in social network analysis, similarity in RD was observed by comparing their consistency using the major MeSH terms in author articles, cited references and citing articles (ARC). Impact beam plots with La indices were drawn and compared for each of the 3 authors. RESULTS: Sung-Ho Jang (South Korea), Chia-Hung Kao (Taiwan), and Chin-Hsiao Tseng (Taiwan) published 445, 780, and 163 articles, respectively. Dr Jang's RD is physiology, and Dr Kao and Dr Tseng's RDs are epidemiology. We confirmed the consistency of the RD terms by comparing the major MeSH terms in the ARC. Their La indexes were 5, 5, and 6, where a higher value indicates more extraordinary research achievement. CONCLUSION: RD consistency was confirmed by comparing the main MeSH terms in ARC. The 3 approaches of RD determination (based on author articles, the La index, and the impact beam plots) were recommended for bibliographical studies in the future.

摘要

背景:可以通过执行社会网络分析,从客观的出版物数据(例如,医学主题词和主题词表 (MeSH) 术语)中确定个人的研究领域 (RD)。文献耦合(例如共引)是一种相似性度量,它依赖于引文分析来确定两篇文章之间 RD 的相似性。本研究比较了文章及其引用参考文献和引用文章 (ARC) 之间的 RD 一致性。

方法:从 PubMed 下载了总共 1388 篇摘要,这些摘要由 3 位高产作者撰写。基于社会网络分析中的前 3 个聚类,通过比较主要 MeSH 术语在作者文章、引用参考文献和引用文章 (ARC) 中的一致性,观察 RD 的相似性。为每位作者绘制了具有 La 指数的影响梁图并进行了比较。

结果:韩国的 Sung-Ho Jang、中国台湾的 Chia-Hung Kao 和中国台湾的 Chin-Hsiao Tseng 分别发表了 445、780 和 163 篇文章。Jang 博士的 RD 是生理学,而 Kao 博士和 Tseng 博士的 RD 是流行病学。我们通过比较 ARC 中的主要 MeSH 术语来确认 RD 术语的一致性。他们的 La 指数分别为 5、5 和 6,其中更高的值表示更卓越的研究成果。

结论:通过比较 ARC 中的主要 MeSH 术语,确认了 RD 的一致性。未来的文献研究推荐使用 3 种 RD 确定方法(基于作者文章、La 指数和影响梁图)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/430097274b74/medi-101-e31335-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/a5704895699d/medi-101-e31335-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/b89fed31753c/medi-101-e31335-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/df948d366c1f/medi-101-e31335-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/fc5e98bdd3f3/medi-101-e31335-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/68e1e127d192/medi-101-e31335-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/a4d6ebd717c0/medi-101-e31335-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/430097274b74/medi-101-e31335-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/a5704895699d/medi-101-e31335-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/b89fed31753c/medi-101-e31335-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/df948d366c1f/medi-101-e31335-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/fc5e98bdd3f3/medi-101-e31335-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/68e1e127d192/medi-101-e31335-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/a4d6ebd717c0/medi-101-e31335-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab9/9646507/430097274b74/medi-101-e31335-g007.jpg

相似文献

[1]
A comparison of 3 productive authors' research domains based on sources from articles, cited references and citing articles using social network analysis.

Medicine (Baltimore). 2022-11-4

[2]
Visual impact beam plots: Analyzing research profiles and bibliometric metrics using the following-leading clustering algorithm (FLCA).

Medicine (Baltimore). 2023-7-14

[3]
The 10 top-cited authors who published papers in journal medicine since 2000 using the betweenness centrality to identify unique names: Bibliometric analysis.

Medicine (Baltimore). 2023-6-23

[4]
Trend and prediction of citations on the topic of neuromuscular junctions in 100 top-cited articles since 2001 using a temporal bar graph: A bibliometric analysis.

Medicine (Baltimore). 2022-10-7

[5]
Evaluating the research domain and achievement for a productive researcher who published 114 sole-author articles: A bibliometric analysis.

Medicine (Baltimore). 2020-5-22

[6]
Whether article types of a scholarly journal are different in cited metrics using cluster analysis of MeSH terms to display: A bibliometric analysis.

Medicine (Baltimore). 2019-10

[7]
Predicting article citations using data of 100 top-cited publications in the journal Medicine since 2011: A bibliometric analysis.

Medicine (Baltimore). 2020-10-30

[8]
Citation analysis of the 100 top-cited articles on the topic of hidradenitis suppurativa since 2013 using Sankey diagrams: Bibliometric analysis.

Medicine (Baltimore). 2022-11-4

[9]
Citation analysis of the 100 top-cited articles on discectomy via endoscopy since 2011 using alluvial diagrams: bibliometric analysis.

Eur J Med Res. 2022-9-1

[10]
The Hirsch-index in self-citation rates with articles in Medicine (Baltimore): Bibliometric analysis of publications in two stages from 2018 to 2021.

Medicine (Baltimore). 2022-11-11

引用本文的文献

[1]
Analyzing author collaborations by developing a follower-leader clustering algorithm and identifying top co-authoring countries: Cluster analysis.

Medicine (Baltimore). 2023-7-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索