Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.
Nature. 2022 Mar;603(7899):79-85. doi: 10.1038/s41586-021-04365-7. Epub 2022 Mar 2.
Biaryl compounds, with two connected aromatic rings, are found across medicine, materials science and asymmetric catalysis. The necessity of joining arene building blocks to access these valuable compounds has inspired several approaches for biaryl bond formation and challenged chemists to develop increasingly concise and robust methods for this task. Oxidative coupling of two C-H bonds offers an efficient strategy for the formation of a biaryl C-C bond; however, fundamental challenges remain in controlling the reactivity and selectivity for uniting a given pair of substrates. Biocatalytic oxidative cross-coupling reactions have the potential to overcome limitations inherent to numerous small-molecule-mediated methods by providing a paradigm with catalyst-controlled selectivity. Here we disclose a strategy for biocatalytic cross-coupling through oxidative C-C bond formation using cytochrome P450 enzymes. We demonstrate the ability to catalyse cross-coupling reactions on a panel of phenolic substrates using natural P450 catalysts. Moreover, we engineer a P450 to possess the desired reactivity, site selectivity and atroposelectivity by transforming a low-yielding, unselective reaction into a highly efficient and selective process. This streamlined method for constructing sterically hindered biaryl bonds provides a programmable platform for assembling molecules with catalyst-controlled reactivity and selectivity.
联芳烃化合物由两个相连的芳环组成,在医学、材料科学和不对称催化领域都有应用。为了获得这些有价值的化合物,需要将芳烃砌块连接起来,这激发了人们采用多种方法来形成联芳烃键,并促使化学家们开发出越来越简洁、强大的方法来完成这项任务。通过两个 C-H 键的氧化偶联可以有效地形成联芳烃 C-C 键;然而,在控制给定底物对的反应性和选择性方面仍然存在基本挑战。生物催化的氧化交叉偶联反应有可能克服许多小分子介导方法所固有的局限性,为催化剂控制的选择性提供范例。在这里,我们披露了一种使用细胞色素 P450 酶通过氧化 C-C 键形成进行生物催化交叉偶联的策略。我们使用天然 P450 催化剂证明了在一系列酚类底物上进行交叉偶联反应的能力。此外,我们通过将低产率、非选择性反应转化为高效、选择性的过程,设计了一种 P450 酶,使其具有所需的反应性、位点选择性和对映选择性。这种用于构建空间位阻联芳烃键的简化方法为使用催化剂控制的反应性和选择性组装分子提供了一个可编程平台。