Suppr超能文献

生物催化氧化交叉偶联反应用于构建联芳键。

Biocatalytic oxidative cross-coupling reactions for biaryl bond formation.

机构信息

Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.

Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Nature. 2022 Mar;603(7899):79-85. doi: 10.1038/s41586-021-04365-7. Epub 2022 Mar 2.

Abstract

Biaryl compounds, with two connected aromatic rings, are found across medicine, materials science and asymmetric catalysis. The necessity of joining arene building blocks to access these valuable compounds has inspired several approaches for biaryl bond formation and challenged chemists to develop increasingly concise and robust methods for this task. Oxidative coupling of two C-H bonds offers an efficient strategy for the formation of a biaryl C-C bond; however, fundamental challenges remain in controlling the reactivity and selectivity for uniting a given pair of substrates. Biocatalytic oxidative cross-coupling reactions have the potential to overcome limitations inherent to numerous small-molecule-mediated methods by providing a paradigm with catalyst-controlled selectivity. Here we disclose a strategy for biocatalytic cross-coupling through oxidative C-C bond formation using cytochrome P450 enzymes. We demonstrate the ability to catalyse cross-coupling reactions on a panel of phenolic substrates using natural P450 catalysts. Moreover, we engineer a P450 to possess the desired reactivity, site selectivity and atroposelectivity by transforming a low-yielding, unselective reaction into a highly efficient and selective process. This streamlined method for constructing sterically hindered biaryl bonds provides a programmable platform for assembling molecules with catalyst-controlled reactivity and selectivity.

摘要

联芳烃化合物由两个相连的芳环组成,在医学、材料科学和不对称催化领域都有应用。为了获得这些有价值的化合物,需要将芳烃砌块连接起来,这激发了人们采用多种方法来形成联芳烃键,并促使化学家们开发出越来越简洁、强大的方法来完成这项任务。通过两个 C-H 键的氧化偶联可以有效地形成联芳烃 C-C 键;然而,在控制给定底物对的反应性和选择性方面仍然存在基本挑战。生物催化的氧化交叉偶联反应有可能克服许多小分子介导方法所固有的局限性,为催化剂控制的选择性提供范例。在这里,我们披露了一种使用细胞色素 P450 酶通过氧化 C-C 键形成进行生物催化交叉偶联的策略。我们使用天然 P450 催化剂证明了在一系列酚类底物上进行交叉偶联反应的能力。此外,我们通过将低产率、非选择性反应转化为高效、选择性的过程,设计了一种 P450 酶,使其具有所需的反应性、位点选择性和对映选择性。这种用于构建空间位阻联芳烃键的简化方法为使用催化剂控制的反应性和选择性组装分子提供了一个可编程平台。

相似文献

1
Biocatalytic oxidative cross-coupling reactions for biaryl bond formation.
Nature. 2022 Mar;603(7899):79-85. doi: 10.1038/s41586-021-04365-7. Epub 2022 Mar 2.
2
Development of a P450 Fusion Enzyme for Biaryl Coupling in Yeast.
ACS Chem Biol. 2022 Nov 18;17(11):2986-2992. doi: 10.1021/acschembio.2c00690. Epub 2022 Oct 31.
3
Biocatalytic Enantioselective Synthesis of Atropisomers.
Acc Chem Res. 2022 Dec 6;55(23):3362-3375. doi: 10.1021/acs.accounts.2c00572. Epub 2022 Nov 7.
4
Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds.
Nature. 2017 Nov 30;551(7682):609-613. doi: 10.1038/nature24641. Epub 2017 Nov 20.
5
Enzymatic assembly of carbon-carbon bonds via iron-catalysed sp C-H functionalization.
Nature. 2019 Jan;565(7737):67-72. doi: 10.1038/s41586-018-0808-5. Epub 2018 Dec 19.
6
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp)-H Cross-Coupling.
Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29.
7
Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis.
Chemistry. 2019 May 17;25(28):6853-6863. doi: 10.1002/chem.201806383. Epub 2019 Mar 15.
8
Self-sufficient P450-reductase chimeras for biocatalysis.
Methods Enzymol. 2023;693:51-71. doi: 10.1016/bs.mie.2023.09.010. Epub 2023 Oct 12.
9
Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings.
Acc Chem Res. 2018 Oct 16;51(10):2512-2523. doi: 10.1021/acs.accounts.8b00267. Epub 2018 Oct 3.

引用本文的文献

1
Gymnosperm-specific CYP90Js enable biflavonoid biosynthesis and microbial production of amentoflavone.
Nat Commun. 2025 Aug 21;16(1):7792. doi: 10.1038/s41467-025-62990-6.
2
Repurposing haemoproteins for asymmetric metal-catalysed H atom transfer.
Nature. 2025 Jul 30. doi: 10.1038/s41586-025-09308-0.
3
Total Synthesis of (-)-Dimatairesinol via Regioselective Intermolecular Oxidative Phenol Coupling.
Org Lett. 2025 Jul 25;27(29):7756-7761. doi: 10.1021/acs.orglett.5c01942. Epub 2025 Jul 10.
6
minChemBio: Expanding Chemical Synthesis with Chemo-Enzymatic Pathways Using Minimal Transitions.
ACS Synth Biol. 2025 Mar 21;14(3):756-770. doi: 10.1021/acssynbio.4c00692. Epub 2025 Feb 14.
7
Biocatalytic enantioselective formation and ring-opening of oxetanes.
Nat Commun. 2025 Jan 30;16(1):1170. doi: 10.1038/s41467-025-56463-z.
8
Engineering the Reaction Pathway of a Non-heme Iron Oxygenase Using Ancestral Sequence Reconstruction.
J Am Chem Soc. 2024 Dec 18;146(50):34352-34363. doi: 10.1021/jacs.4c08420. Epub 2024 Dec 6.
9
A nucleobase-driven P450 peroxidase system enables regio- and stereo-specific formation of C─C and C─N bonds.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2412890121. doi: 10.1073/pnas.2412890121. Epub 2024 Nov 7.

本文引用的文献

1
Regio- and stereoselective intermolecular phenol coupling enzymes in secondary metabolite biosynthesis.
Nat Prod Rep. 2021 May 1;38(5):1011-1043. doi: 10.1039/d0np00010h. Epub 2020 Nov 16.
2
Scalable biocatalytic C-H oxyfunctionalization reactions.
Chem Soc Rev. 2020 Nov 21;49(22):8137-8155. doi: 10.1039/d0cs00440e. Epub 2020 Jul 23.
4
Chromium-Salen Catalyzed Cross-Coupling of Phenols: Mechanism and Origin of the Selectivity.
J Am Chem Soc. 2019 Jun 26;141(25):10016-10032. doi: 10.1021/jacs.9b03890. Epub 2019 Jun 13.
5
Cobalt(II)[salen]-Catalyzed Selective Aerobic Oxidative Cross-Coupling between Electron-Rich Phenols and 2-Naphthols.
J Org Chem. 2019 Jun 21;84(12):7950-7960. doi: 10.1021/acs.joc.9b00822. Epub 2019 May 23.
6
Selective Oxidative Phenol Coupling by Iron Catalysis.
J Org Chem. 2019 Feb 15;84(4):1677-1686. doi: 10.1021/acs.joc.8b03084. Epub 2019 Jan 30.
8
Enantioselective Vanadium-Catalyzed Oxidative Coupling: Development and Mechanistic Insights.
J Org Chem. 2018 Dec 7;83(23):14362-14384. doi: 10.1021/acs.joc.8b02083. Epub 2018 Nov 14.
9
Catalytic Applications of Vanadium: A Mechanistic Perspective.
Chem Rev. 2019 Feb 27;119(4):2128-2191. doi: 10.1021/acs.chemrev.8b00245. Epub 2018 Oct 8.
10
'Democratized' genomic enzymology web tools for functional assignment.
Curr Opin Chem Biol. 2018 Dec;47:77-85. doi: 10.1016/j.cbpa.2018.09.009. Epub 2018 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验