Suppr超能文献

探索 AlphaFold2 在预测氨基酸侧链构象方面的性能及其在 B318L 蛋白晶体结构测定中的应用。

Exploring AlphaFold2's Performance on Predicting Amino Acid Side-Chain Conformations and Its Utility in Crystal Structure Determination of B318L Protein.

机构信息

School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.

Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Int J Mol Sci. 2023 Feb 1;24(3):2740. doi: 10.3390/ijms24032740.

Abstract

Recent technological breakthroughs in machine-learning-based AlphaFold2 (AF2) are pushing the prediction accuracy of protein structures to an unprecedented level that is on par with experimental structural quality. Despite its outstanding structural modeling capability, further experimental validations and performance assessments of AF2 predictions are still required, thus necessitating the development of integrative structural biology in synergy with both computational and experimental methods. Focusing on the B318L protein that plays an essential role in the African swine fever virus (ASFV) for viral replication, we experimentally demonstrate the high quality of the AF2 predicted model and its practical utility in crystal structural determination. Structural alignment implies that the AF2 model shares nearly the same atomic arrangement as the B318L crystal structure except for some flexible and disordered regions. More importantly, side-chain-based analysis at the individual residue level reveals that AF2's performance is likely dependent on the specific amino acid type and that hydrophobic residues tend to be more accurately predicted by AF2 than hydrophilic residues. Quantitative per-residue RMSD comparisons and further molecular replacement trials suggest that AF2 has a large potential to outperform other computational modeling methods in terms of structural determination. Additionally, it is numerically confirmed that the AF2 model is accurate enough so that it may well potentially withstand experimental data quality to a large extent for structural determination. Finally, an overall structural analysis and molecular docking simulation of the B318L protein are performed. Taken together, our study not only provides new insights into AF2's performance in predicting side-chain conformations but also sheds light upon the significance of AF2 in promoting crystal structural determination, especially when the experimental data quality of the protein crystal is poor.

摘要

最近基于机器学习的 AlphaFold2 (AF2) 的技术突破正在将蛋白质结构预测的准确性推向一个前所未有的水平,与实验结构质量相当。尽管 AF2 具有出色的结构建模能力,但仍需要对其预测结果进行进一步的实验验证和性能评估,因此需要与计算和实验方法相结合,发展综合结构生物学。我们以在非洲猪瘟病毒 (ASFV) 中对病毒复制至关重要的 B318L 蛋白为研究对象,实验证明了 AF2 预测模型的高质量及其在晶体结构测定中的实际应用价值。结构比对表明,AF2 模型与 B318L 晶体结构的原子排列几乎相同,除了一些柔性和无序区域。更重要的是,基于侧链的单个残基分析表明,AF2 的性能可能取决于特定的氨基酸类型,并且疏水性残基比亲水性残基更有可能被 AF2 准确预测。逐残基 RMSD 比较和进一步的分子置换试验表明,AF2 在结构测定方面具有很大的潜力,优于其他计算建模方法。此外,数值上证实 AF2 模型的准确性足以在很大程度上抵御结构测定的实验数据质量。最后,对 B318L 蛋白进行了整体结构分析和分子对接模拟。总之,我们的研究不仅为 AF2 在预测侧链构象方面的性能提供了新的见解,而且还揭示了 AF2 在促进晶体结构测定方面的重要性,特别是当蛋白质晶体的实验数据质量较差时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad32/9916901/d78ce1cc26c9/ijms-24-02740-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验