Wu Tianqi, Stein Richard A, Kao Te-Yu, Brown Benjamin, Mchaourab Hassane S
Center for Applied AI for Protein Dynamics, Vanderbilt University, Nashville, TN, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
Nat Commun. 2025 Aug 2;16(1):7107. doi: 10.1038/s41467-025-62582-4.
We describe a modified version of AlphaFold2 that incorporates experimental distance distributions into the network architecture for protein structure prediction. Harnessing the OpenFold platform, we fine-tune AlphaFold2 on structurally dissimilar proteins to explicitly model distance distributions between spin labels determined from Double Electron-Electron Resonance (DEER) spectroscopy. We benchmark the performance of the modified AlphaFold2, refer to as DEERFold, in switching the predicted conformations of a set of membrane transporters using experimental DEER distance distributions. Guided by sparse sets of simulated distance distributions, we showcase the generality of DEERFold in predicting conformational ensembles on a large benchmark set of water soluble and membrane proteins. We find that the intrinsic performance of AlphaFold2 substantially reduces the number of required distributions and the accuracy of their widths needed to drive conformational selection thereby increasing the experimental throughput. The blueprint of DEERFold can be generalized to other experimental methods where distance constraints can be represented by distributions.
我们描述了AlphaFold2的一个修改版本,该版本将实验距离分布纳入用于蛋白质结构预测的网络架构中。利用OpenFold平台,我们在结构不同的蛋白质上对AlphaFold2进行微调,以明确模拟由双电子-电子共振(DEER)光谱确定的自旋标记之间的距离分布。我们使用实验性DEER距离分布对修改后的AlphaFold2(称为DEERFold)在切换一组膜转运蛋白的预测构象方面的性能进行了基准测试。在稀疏的模拟距离分布集的指导下,我们展示了DEERFold在预测一大组水溶性和膜蛋白的构象集合方面的通用性。我们发现,AlphaF2的内在性能大大减少了驱动构象选择所需的分布数量及其宽度的准确性,从而提高了实验通量。DEERFold的蓝图可以推广到其他实验方法,在这些方法中,距离约束可以用分布来表示。