Telleria-Allika Xabier, Escobar Azor Miguel, François Grégoire, Bendazzoli Gian Luigi, Matxain Jon M, Lopez Xabier, Evangelisti Stefano, Berger J Arjan
Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain.
Laboratoire de Chimie et Physique Quantiques, CNRS, Université de Toulouse 3 (UPS) and European Theoretical Spectroscopy Facility, 118 route de Narbonne, 31062 Toulouse, France.
J Chem Phys. 2022 Nov 7;157(17):174107. doi: 10.1063/5.0112413.
In this work, we study the Wigner localization of interacting electrons that are confined to a quasi-one-dimensional harmonic potential using accurate quantum chemistry approaches. We demonstrate that the Wigner regime can be reached using small values of the confinement parameter. To obtain physical insight in our results, we analyze them with a semi-analytical model for two electrons. Thanks to electronic-structure properties such as the one-body density and the particle-hole entropy, we are able to define a path that connects the Wigner regime to the Fermi-gas regime by varying the confinement parameter. In particular, we show that the particle-hole entropy, as a function of the confinement parameter, smoothly connects the two regimes. Moreover, it exhibits a maximum that could be interpreted as the transition point between the localized and delocalized regimes.
在这项工作中,我们使用精确的量子化学方法研究了被限制在准一维谐振势中的相互作用电子的维格纳局域化。我们证明,使用较小的限制参数值就可以达到维格纳区域。为了深入了解我们的结果,我们用一个双电子的半解析模型对其进行分析。借助诸如单粒子密度和粒子-空穴熵等电子结构性质,我们能够通过改变限制参数定义一条连接维格纳区域和费米气体区域的路径。特别地,我们表明,作为限制参数函数的粒子-空穴熵平滑地连接了这两个区域。此外,它呈现出一个最大值,该最大值可被解释为局域化和非局域化区域之间的转变点。