Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest, Hungary.
Science. 2019 May 31;364(6443):870-875. doi: 10.1126/science.aat0905.
The quantum crystal of electrons, predicted more than 80 years ago by Eugene Wigner, remains one of the most elusive states of matter. In this study, we observed the one-dimensional Wigner crystal directly by imaging its charge density in real space. To image, with minimal invasiveness, the many-body electronic density of a carbon nanotube, we used another nanotube as a scanning-charge perturbation. The images we obtained of a few electrons confined in one dimension match the theoretical predictions for strongly interacting crystals. The quantum nature of the crystal emerges in the observed collective tunneling through a potential barrier. These experiments provide the direct evidence for the formation of small Wigner crystals and open the way for studying other fragile interacting states by imaging their many-body density in real space.
电子的量子晶体是由尤金·维格纳(Eugene Wigner)在 80 多年前预言的,它仍然是物质的最难以捉摸的状态之一。在这项研究中,我们通过直接在实空间中成像其电荷密度来观察一维维格纳晶体。为了以最小的侵入性对碳纳米管的多体电子密度进行成像,我们使用另一个纳米管作为扫描电荷扰动。我们对一维中几个电子的受限成像与强相互作用晶体的理论预测相匹配。晶体的量子性质体现在观察到的通过势垒的集体隧穿中。这些实验为小维格纳晶体的形成提供了直接证据,并为通过在实空间中成像其多体密度来研究其他脆弱相互作用状态开辟了道路。