Section for Cognitive Systems, Department of Applied Mathematics and Computer Science (DTU Compute), Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
Sci Rep. 2022 Nov 8;12(1):19016. doi: 10.1038/s41598-022-22597-z.
There is broad interest in discovering quantifiable physiological biomarkers for psychiatric disorders to aid diagnostic assessment. However, finding biomarkers for autism spectrum disorder (ASD) has proven particularly difficult, partly due to high heterogeneity. Here, we recorded five minutes eyes-closed rest electroencephalography (EEG) from 186 adults (51% with ASD and 49% without ASD) and investigated the potential of EEG biomarkers to classify ASD using three conventional machine learning models with two-layer cross-validation. Comprehensive characterization of spectral, temporal and spatial dimensions of source-modelled EEG resulted in 3443 biomarkers per recording. We found no significant group-mean or group-variance differences for any of the EEG features. Interestingly, we obtained validation accuracies above 80%; however, the best machine learning model merely distinguished ASD from the non-autistic comparison group with a mean balanced test accuracy of 56% on the entirely unseen test set. The large drop in model performance between validation and testing, stress the importance of rigorous model evaluation, and further highlights the high heterogeneity in ASD. Overall, the lack of significant differences and weak classification indicates that, at the group level, intellectually able adults with ASD show remarkably typical resting-state EEG.
人们广泛关注发现可量化的精神疾病生物学标志物,以辅助诊断评估。然而,自闭症谱系障碍 (ASD) 的生物标志物的发现特别困难,部分原因是其具有高度异质性。在这里,我们记录了 186 名成年人(51%患有 ASD,49%没有 ASD)五分钟闭眼静息态脑电图 (EEG),并使用具有两层交叉验证的三种传统机器学习模型,研究了 EEG 生物标志物对 ASD 进行分类的潜力。对源模型 EEG 的频谱、时间和空间维度进行全面表征,每个记录得到 3443 个生物标志物。我们没有发现任何 EEG 特征的组平均值或组方差差异。有趣的是,我们获得了超过 80%的验证准确率;然而,最好的机器学习模型仅能将 ASD 与非自闭症对照组区分开来,在完全未知的测试集中,平均平衡测试准确率为 56%。模型在验证和测试之间的性能大幅下降,强调了严格的模型评估的重要性,并进一步突出了 ASD 的高度异质性。总体而言,缺乏显著差异和较弱的分类表明,在群体水平上,智力正常的 ASD 成年人表现出非常典型的静息状态 EEG。