Suppr超能文献

基于声谱图图像的智能技术,用于从 EEG 中自动检测自闭症谱系障碍。

A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG.

机构信息

Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Victoria, Australia.

Nexus eCare, Adelaide, South Australia, Australia.

出版信息

PLoS One. 2021 Jun 25;16(6):e0253094. doi: 10.1371/journal.pone.0253094. eCollection 2021.

Abstract

Autism spectrum disorder (ASD) is a developmental disability characterized by persistent impairments in social interaction, speech and nonverbal communication, and restricted or repetitive behaviors. Currently Electroencephalography (EEG) is the most popular tool to inspect the existence of neurological disorders like autism biomarkers due to its low setup cost, high temporal resolution and wide availability. Generally, EEG recordings produce vast amount of data with dynamic behavior, which are visually analyzed by professional clinician to detect autism. It is laborious, expensive, subjective, error prone and has reliability issue. Therefor this study intends to develop an efficient diagnostic framework based on time-frequency spectrogram images of EEG signals to automatically identify ASD. In the proposed system, primarily, the raw EEG signals are pre-processed using re-referencing, filtering and normalization. Then, Short-Time Fourier Transform is used to transform the pre-processed signals into two-dimensional spectrogram images. Afterward those images are evaluated by machine learning (ML) and deep learning (DL) models, separately. In the ML process, textural features are extracted, and significant features are selected using principal component analysis, and feed them to six different ML classifiers for classification. In the DL process, three different convolutional neural network models are tested. The proposed DL based model achieves higher accuracy (99.15%) compared to the ML based model (95.25%) on an ASD EEG dataset and also outperforms existing methods. The findings of this study suggest that the DL based structure could discover important biomarkers for efficient and automatic diagnosis of ASD from EEG and may assist to develop computer-aided diagnosis system.

摘要

自闭症谱系障碍(ASD)是一种发育障碍,其特征是社交互动、言语和非言语交流以及受限或重复行为方面的持续障碍。目前,由于脑电图(EEG)的设置成本低、时间分辨率高且广泛可用,因此它是检查自闭症等神经障碍生物标志物的最流行工具。通常,EEG 记录产生具有动态行为的大量数据,这些数据由专业临床医生进行视觉分析以检测自闭症。这种方法既费力、昂贵、主观、容易出错,又存在可靠性问题。因此,本研究旨在开发一种基于 EEG 信号时频谱图的有效诊断框架,以自动识别自闭症。在提出的系统中,首先使用重参考、滤波和归一化对原始 EEG 信号进行预处理。然后,使用短时傅里叶变换将预处理后的信号转换为二维谱图图像。然后,分别使用机器学习(ML)和深度学习(DL)模型对这些图像进行评估。在 ML 过程中,提取纹理特征,并使用主成分分析选择显著特征,并将其输入到六个不同的 ML 分类器中进行分类。在 DL 过程中,测试了三种不同的卷积神经网络模型。与基于 ML 的模型(95.25%)相比,基于 DL 的模型在 ASD EEG 数据集上实现了更高的准确性(99.15%),并且优于现有方法。这项研究的结果表明,基于 DL 的结构可以从 EEG 中发现用于自闭症高效和自动诊断的重要生物标志物,并可能有助于开发计算机辅助诊断系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/390e/8232415/6e56fc4dc9b7/pone.0253094.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验