Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York, United States, United States.
Renaissance School of Medicine at Stony Brook University, Department of Emergency Medicine, Stony Brook, New York, United States, United States.
J Biomed Opt. 2022 Nov;27(11). doi: 10.1117/1.JBO.27.11.116001.
Severe burn injuries cause significant hypermetabolic alterations that are highly dynamic, hard to predict, and require acute and critical care. The clinical assessments of the severity of burn injuries are highly subjective and have consistently been reported to be inaccurate. Therefore, the utilization of other imaging modalities is crucial to reaching an objective and accurate burn assessment modality.
We describe a non-invasive technique using terahertz time-domain spectroscopy (THz-TDS) and the wavelet packet Shannon entropy to automatically estimate the burn depth and predict the wound healing outcome of thermal burn injuries.
We created 40 burn injuries of different severity grades in two porcine models using scald and contact methods of infliction. We used our THz portable handheld spectral reflection (PHASR) scanner to obtain the in vivo THz-TDS images. We used the energy to Shannon entropy ratio of the wavelet packet coefficients of the THz-TDS waveforms on day 0 to create supervised support vector machine (SVM) classification models. Histological assessments of the burn biopsies serve as the ground truth.
We achieved an accuracy rate of 94.7% in predicting the wound healing outcome, as determined by histological measurement of the re-epithelialization rate on day 28 post-burn induction, using the THz-TDS measurements obtained on day 0. Furthermore, we report the accuracy rates of 89%, 87.1%, and 87.6% in automatic diagnosis of the superficial partial-thickness, deep partial-thickness, and full-thickness burns, respectively, using a multiclass SVM model.
The THz PHASR scanner promises a robust, high-speed, and accurate diagnostic modality to improve the clinical triage of burns and their management.
严重烧伤会导致高度动态、难以预测且需要急性和重症监护的代谢亢进改变。烧伤严重程度的临床评估具有高度主观性,并且一直被报道不准确。因此,利用其他成像方式对于实现客观准确的烧伤评估至关重要。
我们描述了一种使用太赫兹时域光谱(THz-TDS)和小波包香农熵的非侵入性技术,用于自动估计烧伤深度并预测热烧伤的伤口愈合结果。
我们使用烫和接触两种致伤方法在两个猪模型中创建了 40 个不同严重程度等级的烧伤损伤。我们使用我们的太赫兹便携式手持光谱反射(PHASR)扫描仪获得体内 THz-TDS 图像。我们使用 THz-TDS 波形的小波包系数的能量与香农熵比在第 0 天创建有监督支持向量机(SVM)分类模型。烧伤活检的组织学评估作为金标准。
我们通过对第 28 天烧伤诱导后再上皮化率的组织学测量,使用第 0 天获得的 THz-TDS 测量值,实现了对伤口愈合结果的 94.7%预测准确率。此外,我们报告了使用多类 SVM 模型分别对浅二度部分厚度、深二度部分厚度和全厚度烧伤进行自动诊断的准确率为 89%、87.1%和 87.6%。
THz PHASR 扫描仪有望成为一种强大、高速和准确的诊断方式,以改善烧伤的临床分诊和管理。