Department of Chemistry, University of California Davis, Davis, 95616California, United States.
Department of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California95817, United States.
Bioconjug Chem. 2022 Dec 21;33(12):2332-2340. doi: 10.1021/acs.bioconjchem.2c00361. Epub 2022 Nov 9.
Human serum albumin (HSA) is the most abundant protein in human blood plasma. It plays a critical role in the native transportation of numerous drugs, metabolites, nutrients, and small molecules. HSA has been successfully used clinically as a noncovalent carrier for insulin (e.g., Levemir), GLP-1 (e.g., Liraglutide), and paclitaxel (e.g., Abraxane). Site-specific bioconjugation strategies for HSA only would greatly expand its role as the biocompatible, non-toxic platform for theranostics purposes. Using the enabling one-bead one-compound (OBOC) technology, we generated combinatorial peptide libraries containing myristic acid, a well-known binder to HSA at Sudlow I and II binding pockets, and an acrylamide. We then used HSA as a probe to screen the OBOC myristylated peptide libraries for reactive affinity elements (RAEs) that can specifically and covalently ligate to the lysine residue at the proximity of these pockets. Several RAEs have been identified and confirmed to be able to conjugate to HSA covalently. The conjugation can occur at physiological pH and proceed with a high yield within 1 h at room temperature. Tryptic peptide profiling of derivatized HSA has revealed two lysine residues (K225 and K414) as the conjugation sites, which is much more specific than the conventional lysine labeling strategy with -hydroxysuccinimide ester. The RAE-driven site-specific ligation to HSA was found to occur even in the presence of other prevalent blood proteins such as immunoglobulin or whole serum. Furthermore, these RAEs are orthogonal to the maleimide-based conjugation strategy for Cys34 of HSA. Together, these attributes make the RAEs the promising leads to further develop and HSA bioconjugation strategies for numerous biomedical applications.
人血清白蛋白(HSA)是人类血浆中最丰富的蛋白质。它在许多药物、代谢物、营养素和小分子的天然运输中起着关键作用。HSA 已成功地在临床上用作胰岛素(例如,Levemir)、GLP-1(例如,Liraglutide)和紫杉醇(例如,Abraxane)的非共价载体。仅对 HSA 进行位点特异性生物缀合策略将极大地扩展其作为用于治疗目的的生物相容、无毒平台的作用。使用使能的一珠一化合物(OBOC)技术,我们生成了包含豆蔻酸的组合肽文库,豆蔻酸是 HSA 在 Sudlow I 和 II 结合口袋中的众所周知的结合物,以及丙烯酰胺。然后,我们使用 HSA 作为探针筛选 OBOC 豆蔻酰化肽文库,以寻找能够特异性和共价连接到这些口袋附近赖氨酸残基的反应性亲和元件(RAE)。已经鉴定并证实了几个 RAE 能够共价连接到 HSA 上。在生理 pH 下,在室温下 1 小时内可以以高产率进行缀合。衍生化 HSA 的胰蛋白酶肽谱分析显示两个赖氨酸残基(K225 和 K414)为缀合位点,比用 -羟基琥珀酰亚胺酯的常规赖氨酸标记策略更具特异性。即使存在其他常见的血液蛋白(如免疫球蛋白或全血清),也发现 RAE 驱动的 HSA 位点特异性连接。此外,这些 RAE 与用于 HSA 半胱氨酸 34 的马来酰亚胺基缀合策略正交。这些特性使 RAE 成为进一步开发和 HSA 生物缀合策略用于众多生物医学应用的有前途的先导。