Dipartimento di Scienze Chimiche, Università degli studi di Padova, Via Marzolo 1, Padova35131, Italy.
Xanadu, TorontoON M5G 2C8, Canada.
J Chem Theory Comput. 2022 Dec 13;18(12):7457-7469. doi: 10.1021/acs.jctc.2c00974. Epub 2022 Nov 9.
Quantum chemical calculations on quantum computers have been focused mostly on simulating molecules in the gas phase. Molecules in liquid solution are, however, most relevant for chemistry. Continuum solvation models represent a good compromise between computational affordability and accuracy in describing solvation effects within a quantum chemical description of solute molecules. In this work, we extend the variational quantum eigensolver to simulate solvated systems using the polarizable continuum model. To account for the state dependent solute-solvent interaction we generalize the variational quantum eigensolver algorithm to treat non-linear molecular Hamiltonians. We show that including solvation effects does not impact the algorithmic efficiency. Numerical results of noiseless simulations for molecular systems with up to 12 spin-orbitals (qubits) are presented. Furthermore, calculations performed on a simulated noisy quantum hardware (IBM Q, Mumbai) yield computed solvation free energies in fair agreement with the classical calculations.
量子化学计算在量子计算机上主要集中在模拟气相中的分子。然而,液态溶液中的分子对化学最相关。连续溶剂化模型在描述溶质分子的量子化学描述中的溶剂化效应方面,在计算可负担性和准确性之间提供了很好的折衷。在这项工作中,我们扩展了变分量子本征求解器,以使用极化连续体模型模拟溶剂化系统。为了考虑状态相关的溶质-溶剂相互作用,我们将变分量子本征求解器算法推广到处理非线性分子哈密顿量。我们表明,包括溶剂化效应不会影响算法效率。我们给出了高达 12 个自旋轨道(qubit)的分子系统无噪声模拟的数值结果。此外,在模拟的嘈杂量子硬件(IBM Q,孟买)上进行的计算得出的溶剂化自由能与经典计算相当吻合。