文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于现实世界药物发现的混合量子计算管道。

A hybrid quantum computing pipeline for real world drug discovery.

机构信息

Tencent Quantum Lab, Shenzhen, 518057, China.

AceMapAI Biotechnology, Suzhou, 215000, China.

出版信息

Sci Rep. 2024 Jul 23;14(1):16942. doi: 10.1038/s41598-024-67897-8.


DOI:10.1038/s41598-024-67897-8
PMID:39043787
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11266395/
Abstract

Quantum computing, with its superior computational capabilities compared to classical approaches, holds the potential to revolutionize numerous scientific domains, including pharmaceuticals. However, the application of quantum computing for drug discovery has primarily been limited to proof-of-concept studies, which often fail to capture the intricacies of real-world drug development challenges. In this study, we diverge from conventional investigations by developing a hybrid quantum computing pipeline tailored to address genuine drug design problems. Our approach underscores the application of quantum computation in drug discovery and propels it towards more scalable system. We specifically construct our versatile quantum computing pipeline to address two critical tasks in drug discovery: the precise determination of Gibbs free energy profiles for prodrug activation involving covalent bond cleavage, and the accurate simulation of covalent bond interactions. This work serves as a pioneering effort in benchmarking quantum computing against veritable scenarios encountered in drug design, especially the covalent bonding issue present in both of the case studies, thereby transitioning from theoretical models to tangible applications. Our results demonstrate the potential of a quantum computing pipeline for integration into real world drug design workflows.

摘要

量子计算在计算能力方面优于经典方法,有可能彻底改变包括制药在内的众多科学领域。然而,量子计算在药物发现中的应用主要局限于概念验证研究,这些研究往往无法捕捉到现实世界药物开发挑战的复杂性。在这项研究中,我们通过开发一种针对实际药物设计问题的混合量子计算管道,与传统研究方法分道扬镳。我们的方法强调了量子计算在药物发现中的应用,并推动其向更具可扩展性的系统发展。我们特别构建了我们的多功能量子计算管道,以解决药物发现中的两个关键任务:精确确定涉及共价键断裂的前药激活的吉布斯自由能分布,以及准确模拟共价键相互作用。这项工作是对量子计算在药物设计中实际遇到的场景进行基准测试的开创性努力,特别是两个案例研究中都存在的共价键问题,从而从理论模型过渡到实际应用。我们的结果表明,量子计算管道有可能集成到实际的药物设计工作流程中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/94e8a5aa65e2/41598_2024_67897_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/a20209dcdca1/41598_2024_67897_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/6e07c8e28354/41598_2024_67897_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/1b2b45d20a05/41598_2024_67897_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/e887a52903ea/41598_2024_67897_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/f85a809c94d7/41598_2024_67897_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/e7e4c8e9befc/41598_2024_67897_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/94e8a5aa65e2/41598_2024_67897_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/a20209dcdca1/41598_2024_67897_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/6e07c8e28354/41598_2024_67897_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/1b2b45d20a05/41598_2024_67897_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/e887a52903ea/41598_2024_67897_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/f85a809c94d7/41598_2024_67897_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/e7e4c8e9befc/41598_2024_67897_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d88/11266395/94e8a5aa65e2/41598_2024_67897_Fig7_HTML.jpg

相似文献

[1]
A hybrid quantum computing pipeline for real world drug discovery.

Sci Rep. 2024-7-23

[2]
Quantum computing's potential for drug discovery: Early stage industry dynamics.

Drug Discov Today. 2021-7

[3]
Quantum mechanical-based strategies in drug discovery: Finding the pace to new challenges in drug design.

Curr Opin Struct Biol. 2024-8

[4]
The Future of Drug Development with Quantum Computing.

Methods Mol Biol. 2024

[5]
Binding Free Energy Calculation Using Quantum Mechanics Aimed for Drug Lead Optimization.

Methods Mol Biol. 2020

[6]
Perspective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications.

J Chem Theory Comput. 2022-12-13

[7]
Quantum mechanics implementation in drug-design workflows: does it really help?

Drug Des Devel Ther. 2017-8-31

[8]
User-Friendly Quantum Mechanics: Applications for Drug Discovery.

Methods Mol Biol. 2020

[9]
Quantum computing for near-term applications in generative chemistry and drug discovery.

Drug Discov Today. 2023-8

[10]
Large-scale integrated super-computing platform for next generation virtual drug discovery.

Curr Opin Chem Biol. 2011-6-30

引用本文的文献

[1]
Challenges and Advances in the Simulation of Targeted Covalent Inhibitors Using Quantum Computing.

J Phys Chem Lett. 2025-8-21

[2]
Precision Recovery After Spinal Cord Injury: Integrating CRISPR Technologies, AI-Driven Therapeutics, Single-Cell Omics, and System Neuroregeneration.

Int J Mol Sci. 2025-7-20

[3]
Quantum Oncology: The Applications of Quantum Computing in Cancer Research.

J Med Syst. 2025-7-23

[4]
Quantum-inspired computational drug design for phytopharmaceuticals: a herbal holography analysis.

J Mol Model. 2025-6-13

[5]
Designing microplastic-binding peptides with a variational quantum circuit-based hybrid quantum-classical approach.

Sci Adv. 2024-12-20

[6]
Role of ruscogenin extracted from Radix Ophiopogon Japonicus in antagonizing 5-hydroxytryptamine and dopamine receptors through computational screening.

PLoS One. 2024

本文引用的文献

[1]
Quantum Flow Algorithms for Simulating Many-Body Systems on Quantum Computers.

Phys Rev Lett. 2023-11-17

[2]
AmberTools.

J Chem Inf Model. 2023-10-23

[3]
Accurate and efficient calculations of Hellmann-Feynman forces for quantum computation.

J Chem Phys. 2023-9-21

[4]
Schrödinger-Heisenberg Variational Quantum Algorithms.

Phys Rev Lett. 2023-8-11

[5]
TenCirChem: An Efficient Quantum Computational Chemistry Package for the NISQ Era.

J Chem Theory Comput. 2023-7-11

[6]
Evidence for the utility of quantum computing before fault tolerance.

Nature. 2023-6

[7]
Multiscale Simulations of the Covalent Inhibition of the SARS-CoV-2 Main Protease: Four Compounds and Three Reaction Mechanisms.

J Am Chem Soc. 2023-6-21

[8]
Pan-KRAS inhibitor disables oncogenic signalling and tumour growth.

Nature. 2023-7

[9]
Hybrid quantum-classical machine learning for generative chemistry and drug design.

Sci Rep. 2023-5-22

[10]
Molecular Energy Landscapes of Hardware-Efficient Ansätze in Quantum Computing.

J Chem Theory Comput. 2023-2-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索