文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

将聚(L-组氨酸)接枝到石墨烯纳米片表面及其在药物传递中的应用:共价与非共价方法。

Surface functionalization of graphene nanosheet with poly (L-histidine) and its application in drug delivery: covalent vs non-covalent approaches.

机构信息

Department of Chemistry, University of Birjand, Birjand, Iran.

出版信息

Sci Rep. 2022 Nov 9;12(1):19046. doi: 10.1038/s41598-022-21619-0.


DOI:10.1038/s41598-022-21619-0
PMID:36351935
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9646737/
Abstract

Nowadays, nanomaterials are increasingly being used as drug carriers in the treatment of different types of cancers. As a result, these applications make them attractive to researchers dealing with diagnosis and biomarkers discovery of the disease. In this study, the adsorption behavior of gemcitabine (GMC) on graphene nanosheet (GNS), in the presence and absence of Poly (L-histidine) (PLH) polymer is discussed using molecular dynamics (MD) simulation. The MD results revealed an increase in the efficiency and targeting of the drug when the polymer is covalently attached to the graphene substrate. In addition, the metadynamics simulation to investigate the effects of PLH on the adsorption capacity of the GNS, and explore the adsorption/desorption process of GMC on pristine and PLH- grafted GNS is performed. The metadynamics calculations showed that the amount of free energy of the drug in acidic conditions is higher (- 281.26 kJ/mol) than the free energy in neutral conditions (- 346.24 kJ/mol). Consequently, the PLH polymer may not only help drug adsorption but can also help in drug desorption in lower pH environments. Based on these findings, it can be said that covalent polymer bonding not only can help in the formation of a targeted drug delivery system but also can increase the adsorption capacity of the substrate.

摘要

如今,纳米材料越来越多地被用作治疗不同类型癌症的药物载体。因此,这些应用使它们对从事疾病诊断和生物标志物发现的研究人员具有吸引力。在这项研究中,使用分子动力学(MD)模拟讨论了在存在和不存在聚(L-组氨酸)(PLH)聚合物的情况下,盐酸吉西他滨(GMC)在石墨烯纳米片(GNS)上的吸附行为。MD 结果表明,当聚合物通过共价键连接到石墨烯基底时,药物的效率和靶向性提高。此外,还进行了元动力学模拟,以研究 PLH 对 GNS 吸附能力的影响,并探索 GMC 在原始和 PLH 接枝 GNS 上的吸附/解吸过程。元动力学计算表明,在酸性条件下药物的自由能(-281.26 kJ/mol)高于中性条件下的自由能(-346.24 kJ/mol)。因此,PLH 聚合物不仅可以帮助药物吸附,还可以帮助在较低 pH 环境中药物解吸。基于这些发现,可以说共价聚合物键合不仅可以帮助形成靶向药物递送系统,还可以提高基底的吸附能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/a4f9aef3f41e/41598_2022_21619_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/816c021aee5f/41598_2022_21619_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/8fe249a340f2/41598_2022_21619_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/e2cfbe8afed1/41598_2022_21619_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/555cfb39424e/41598_2022_21619_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/87ddff764075/41598_2022_21619_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/0f32c46de4d4/41598_2022_21619_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/3c099a7458c6/41598_2022_21619_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/a4f9aef3f41e/41598_2022_21619_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/816c021aee5f/41598_2022_21619_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/8fe249a340f2/41598_2022_21619_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/e2cfbe8afed1/41598_2022_21619_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/555cfb39424e/41598_2022_21619_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/87ddff764075/41598_2022_21619_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/0f32c46de4d4/41598_2022_21619_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/3c099a7458c6/41598_2022_21619_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2be/9646737/a4f9aef3f41e/41598_2022_21619_Fig8_HTML.jpg

相似文献

[1]
Surface functionalization of graphene nanosheet with poly (L-histidine) and its application in drug delivery: covalent vs non-covalent approaches.

Sci Rep. 2022-11-9

[2]
Development of the poly(l-histidine) grafted carbon nanotube as a possible smart drug delivery vehicle.

Comput Biol Med. 2022-4

[3]
Probing the effect of polyethene glycol on the adsorption mechanisms of Gem on the hexagonal boron nitride as a highly efficient polymer-based drug delivery system: DFT, classical MD and Well-tempered Metadynamics simulations.

J Mol Graph Model. 2020-7

[4]
Screening of the structural, topological, and electronic properties of the functionalized Graphene nanosheets as potential Tegafur anticancer drug carriers using DFT method.

J Biomol Struct Dyn. 2017-8-22

[5]
Design of new drug delivery platform based on surface functionalization of black phosphorus nanosheet with a smart polymer for enhancing the efficiency of doxorubicin in the treatment of cancer.

J Biomed Mater Res A. 2021-10

[6]
pH-sensitive nanoparticles of poly(L-histidine)-poly(lactide-co-glycolide)-tocopheryl polyethylene glycol succinate for anti-tumor drug delivery.

Acta Biomater. 2014-9-19

[7]
Engineered nanoparticles as Selinexor drug delivery systems across the cell membrane and related signaling pathways in cancer cells.

J Mol Graph Model. 2024-9

[8]
Theoretical elucidation of the amino acid interaction with graphene and functionalized graphene nanosheets: insights from DFT calculation and MD simulation.

Amino Acids. 2020-10

[9]
Unsaturated nitrogen-rich polymer poly(l-histidine) gated reversibly switchable mesoporous silica nanoparticles using "graft to" strategy for drug controlled release.

Acta Biomater. 2017-9-2

[10]
Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs.

Adv Drug Deliv Rev. 2016-4-13

引用本文的文献

[1]
The role of microplastics as vectors of antibiotic contaminants via a molecular simulation approach.

Sci Rep. 2025-7-24

[2]
Exploring 2D Graphene-Based Nanomaterials for Biomedical Applications: A Theoretical Modeling Perspective.

Small Sci. 2025-3-16

[3]
Influences of defective interphase and contact region among nanosheets on the electrical conductivity of polymer graphene nanocomposites.

Sci Rep. 2024-6-8

[4]
Assessment of electrical conductivity of polymer nanocomposites containing a deficient interphase around graphene nanosheet.

Sci Rep. 2024-4-16

本文引用的文献

[1]
Multifunctional graphene oxide nanoparticles for drug delivery in cancer.

J Control Release. 2022-10

[2]
A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions.

Chemosphere. 2022-11

[3]
New Framework for Computing a General Local Self-Diffusion Coefficient Using Statistical Mechanics.

J Chem Theory Comput. 2022-6-14

[4]
Investigation of the Associations between a Nanomaterial's Microrheology and Toxicology.

ACS Omega. 2022-4-13

[5]
Origin of Metal Cluster Tuning Enzyme Activity at the Bio-Nano Interface.

JACS Au. 2022-4-11

[6]
Biofilm-Associated Agr and Sar Quorum Sensing Systems of Are Inhibited by 3-Hydroxybenzoic Acid Derived from .

ACS Omega. 2022-4-20

[7]
DFT-based QM/MM with particle-mesh Ewald for direct, long-range electrostatic embedding.

J Chem Phys. 2022-5-7

[8]
Enhanced Interlayer Interaction and Second-Harmonic-Generation Response in a KBeBOF-Type Inorganic-Organic Hybrid Zinc Borate.

Inorg Chem. 2022-5-9

[9]
"Smart" Composite Microneedle Patch Stabilizes Glucagon and Prevents Nocturnal Hypoglycemia: Experimental Studies and Molecular Dynamics Simulation.

ACS Appl Mater Interfaces. 2022-5-11

[10]
Insights into glyphosate removal efficiency using a new 2D nanomaterial.

RSC Adv. 2022-3-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索