Suppr超能文献

分析 Twitter 选举对话趋同的比较框架。

A comparative framework to analyze convergence on Twitter electoral conversations.

机构信息

Escuela de Ingeniería, Ciencia y Tecnología de la Universidad del Rosario, Bogotá, Colombia.

Facultad de Estudios Internacionales, Políticos y Urbanos de la Universidad del Rosario, Bogotá, Colombia.

出版信息

Sci Rep. 2022 Nov 9;12(1):19062. doi: 10.1038/s41598-022-21861-6.

Abstract

Literature on social networks and elections has focused on predicting electoral outcomes rather than on understanding how the discussions between users evolve over time. As a result, most studies focus on a single election and few comparative studies exist. In this article, a framework to analyze Twitter conversations about the election candidates is proposed. Using DeGroot's consensus model (an assumption that all users are attempting to persuade others to talk about a candidate), this framework is useful to identify the structure and strength of connections of the mention networks on the months before an election day. It also helps to make comparisons between elections and identify patterns in different contexts. In concrete, it was found that elections in which the incumbent was running have slower convergence (more closed communities with fewer links between them) and that there is no difference between parliamentary and presidential elections. Therefore, there is evidence that the political system and the role of the incumbent in the election influences the way conversations on Twitter occur.

摘要

关于社交网络和选举的文献主要集中在预测选举结果上,而不是研究用户之间的讨论如何随时间演变。因此,大多数研究都集中在一次选举上,很少有比较研究。在本文中,提出了一个分析关于选举候选人的 Twitter 对话的框架。该框架使用 DeGroot 的共识模型(假设所有用户都试图说服他人讨论候选人),有助于识别选举日前几个月提及网络的结构和连接强度。它还有助于在不同背景下进行选举比较,并识别不同模式。具体而言,发现现任者参选的选举收敛速度较慢(具有较少链接的封闭社区更多),而且议会选举和总统选举之间没有区别。因此,有证据表明,政治制度和现任者在选举中的角色影响了 Twitter 上对话的方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d0f/9646886/2ff2a4e9d463/41598_2022_21861_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验