Suppr超能文献

机器学习辅助实时无标记 SERS 诊断肺癌所致恶性胸腔积液。

Machine Learning Assisted Real-Time Label-Free SERS Diagnoses of Malignant Pleural Effusion due to Lung Cancer.

机构信息

Translational Biophotonics Laboratory, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore.

Respiratory and Critical Care Medicine, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.

出版信息

Biosensors (Basel). 2022 Oct 28;12(11):940. doi: 10.3390/bios12110940.

Abstract

More than half of all pleural effusions are due to malignancy of which lung cancer is the main cause. Pleural effusions can complicate the course of pneumonia, pulmonary tuberculosis, or underlying systemic disease. We explore the application of label-free surface-enhanced Raman spectroscopy (SERS) as a point of care (POC) diagnostic tool to identify if pleural effusions are due to lung cancer or to other causes (controls). Lung cancer samples showed specific SERS spectral signatures such as the position and intensity of the Raman band in different wave number region using a novel silver coated silicon nanopillar (SCSNP) as a SERS substrate. We report a classification accuracy of 85% along with a sensitivity and specificity of 87% and 83%, respectively, for the detection of lung cancer over control pleural fluid samples with a receiver operating characteristics (ROC) area under curve value of 0.93 using a PLS-DA binary classifier to distinguish between lung cancer over control subjects. We have also evaluated discriminative wavenumber bands responsible for the distinction between the two classes with the help of a variable importance in projection (VIP) score. We found that our label-free SERS platform was able to distinguish lung cancer from pleural effusions due to other causes (controls) with higher diagnostic accuracy.

摘要

超过一半的胸腔积液是由恶性肿瘤引起的,其中肺癌是主要原因。胸腔积液可使肺炎、肺结核或潜在的系统性疾病的病程复杂化。我们探讨了无标记表面增强拉曼光谱(SERS)作为一种即时诊断(POC)工具的应用,以确定胸腔积液是否由肺癌或其他原因(对照)引起。肺癌样本显示了特定的 SERS 光谱特征,例如使用新型银涂硅纳米柱(SCSNP)作为 SERS 基底,在不同波数区域中拉曼带的位置和强度。我们报告了 85%的分类准确率,以及 87%的敏感性和 83%的特异性,用于检测肺癌与对照胸腔积液样本,接收器操作特性(ROC)曲线下面积为 0.93,使用偏最小二乘法-判别分析(PLS-DA)二进制分类器来区分肺癌与对照。我们还通过变量重要性投影(VIP)评分评估了区分这两个类别的有区别的波数带。我们发现,我们的无标记 SERS 平台能够以更高的诊断准确性区分肺癌与其他原因(对照)引起的胸腔积液。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c4/9688333/0b9ff58e81a3/biosensors-12-00940-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验