Larrañaga-Ordaz Daniel, Martínez-Maldonado Miguel A, Millán-Chiu Blanca E, Fernández Francisco, Castaño-Tostado Eduardo, Gómez-Lim Miguel Ángel, Loske Achim M
Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
J Fungi (Basel). 2022 Oct 24;8(11):1117. doi: 10.3390/jof8111117.
Shock waves, as used in medicine, can induce cell permeabilization, genetically transforming filamentous fungi; however, little is known on the interaction of shock waves with the cell wall. Because of this, the selection of parameters has been empirical. We studied the influence of shock waves on the germination of , to understand their effect on the modulation of four genes related to the growth of conidia. Parameters were varied in the range reported in protocols for genetic transformation. Vials containing conidia in suspension were exposed to either 50, 100 or 200 single-pulse or tandem shock waves, with different peak pressures (approximately 42, 66 and 83 MPa). In the tandem mode, three delays were tested. To equalize the total energy, the number of tandem "events" was halved compared to the number of single-pulse shock waves. Our results demonstrate that shock waves do not generate severe cellular effects on the viability and germination of conidia. Nevertheless, increase in the aggressiveness of the treatment induced a modification in four tested genes. Scanning electron microscopy revealed significant changes to the cell wall of the conidia. Under optimized conditions, shock waves could be used for several biotechnological applications, surpassing conventional techniques.
医学中使用的冲击波可诱导细胞透化,从而对丝状真菌进行遗传转化;然而,关于冲击波与细胞壁的相互作用却知之甚少。因此,参数的选择一直是凭经验的。我们研究了冲击波对[具体真菌名称未给出]孢子萌发的影响,以了解其对与分生孢子生长相关的四个基因调控的作用。参数在遗传转化方案所报道的范围内变化。装有悬浮分生孢子的小瓶分别接受50、100或200次单脉冲或串联冲击波处理,峰值压力不同(约42、66和83兆帕)。在串联模式下,测试了三种延迟时间。为使总能量相等,串联“事件”的数量与单脉冲冲击波的数量相比减半。我们的结果表明,冲击波不会对分生孢子的活力和萌发产生严重的细胞效应。然而,处理强度的增加会导致四个测试基因发生改变。扫描电子显微镜显示分生孢子的细胞壁有显著变化。在优化条件下,冲击波可用于多种生物技术应用,优于传统技术。