Suppr超能文献

人诱导多能干细胞的软骨分化。

Chondrogenic Differentiation of Human-Induced Pluripotent Stem Cells.

机构信息

Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.

Shriners Hospitals for Children - St. Louis, St. Louis, MO, USA.

出版信息

Methods Mol Biol. 2023;2598:87-114. doi: 10.1007/978-1-0716-2839-3_8.

Abstract

The generation of large quantities of genetically defined human chondrocytes remains a critical step for the development of tissue engineering strategies for cartilage regeneration and high-throughput drug screening. This protocol describes chondrogenic differentiation of human-induced pluripotent stem cells (hiPSCs), which can undergo genetic modification and the capacity for extensive cell expansion. The hiPSCs are differentiated in a stepwise manner in monolayer through the mesodermal lineage for 12 days using defined growth factors and small molecules. This is followed by 28 days of chondrogenic differentiation in a 3D pellet culture system using transforming growth factor beta 3 and specific compounds to inhibit off-target differentiation. The 6-week protocol results in hiPSC-derived cartilaginous tissue that can be characterized by histology, immunohistochemistry, and gene expression or enzymatically digested to isolate chondrocyte-like cells. Investigators can use this protocol for experiments including genetic engineering, in vitro disease modeling, or tissue engineering.

摘要

大量遗传定义的人源软骨细胞的生成仍然是软骨再生组织工程策略和高通量药物筛选发展的关键步骤。本方案描述了人诱导多能干细胞(hiPSC)的软骨分化,hiPSC 可经过基因修饰和广泛的细胞扩增。hiPSC 采用逐步方法在单层中通过中胚层谱系分化 12 天,使用定义的生长因子和小分子。随后在 3D 微球培养系统中进行 28 天的软骨分化,使用转化生长因子β 3 和特定化合物抑制非靶分化。6 周方案可得到 hiPSC 来源的软骨组织,可通过组织学、免疫组织化学和基因表达进行特征分析,或通过酶消化分离出类软骨细胞。研究人员可使用该方案进行包括基因工程、体外疾病建模或组织工程在内的实验。

相似文献

1
Chondrogenic Differentiation of Human-Induced Pluripotent Stem Cells.
Methods Mol Biol. 2023;2598:87-114. doi: 10.1007/978-1-0716-2839-3_8.
2
Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture.
Int J Biochem Cell Biol. 2013 Aug;45(8):1802-12. doi: 10.1016/j.biocel.2013.05.029. Epub 2013 Jun 2.
3
5
Improved approach for chondrogenic differentiation of human induced pluripotent stem cells.
Stem Cell Rev Rep. 2015 Apr;11(2):242-53. doi: 10.1007/s12015-014-9581-5.
6
The Role of MicroRNAs in Early Chondrogenesis of Human Induced Pluripotent Stem Cells (hiPSCs).
Int J Mol Sci. 2019 Sep 5;20(18):4371. doi: 10.3390/ijms20184371.
8
Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells.
Stem Cells Dev. 2013 Jan 1;22(1):102-13. doi: 10.1089/scd.2012.0127. Epub 2012 Sep 4.
10
Culture substrate-associated YAP inactivation underlies chondrogenic differentiation of human induced pluripotent stem cells.
Stem Cells Transl Med. 2021 Jan;10(1):115-127. doi: 10.1002/sctm.20-0058. Epub 2020 Aug 21.

引用本文的文献

1
Future perspectives: advances in bone/cartilage organoid technology and clinical potential.
Biomater Transl. 2024 Nov 15;5(4):425-443. doi: 10.12336/biomatertransl.2024.04.007. eCollection 2024.
2
Advancements in tissue engineering for articular cartilage regeneration.
Heliyon. 2024 Feb 1;10(3):e25400. doi: 10.1016/j.heliyon.2024.e25400. eCollection 2024 Feb 15.
3
From cells to organs: progress and potential in cartilaginous organoids research.
J Transl Med. 2023 Dec 21;21(1):926. doi: 10.1186/s12967-023-04591-9.
5
Cell Therapy Approaches for Articular Cartilage Regeneration.
Organogenesis. 2023 Dec 31;19(1):2278235. doi: 10.1080/15476278.2023.2278235. Epub 2023 Nov 14.

本文引用的文献

1
A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues.
Sci Adv. 2021 Jan 27;7(5). doi: 10.1126/sciadv.abd9858. Print 2021 Jan.
2
Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis.
Nat Commun. 2021 Jan 13;12(1):362. doi: 10.1038/s41467-020-20598-y.
3
Formation of Osteochondral Organoids from Murine Induced Pluripotent Stem Cells.
Tissue Eng Part A. 2021 Aug;27(15-16):1099-1109. doi: 10.1089/ten.TEA.2020.0273. Epub 2020 Dec 22.
8
Designer Stem Cells: Genome Engineering and the Next Generation of Cell-Based Therapies.
J Orthop Res. 2019 Jun;37(6):1287-1293. doi: 10.1002/jor.24304. Epub 2019 May 2.
9
A Synthetic Gene Circuit for Self-Regulating Delivery of Biologic Drugs in Engineered Tissues.
Tissue Eng Part A. 2019 May;25(9-10):809-820. doi: 10.1089/ten.TEA.2019.0027.
10
Experimental Strategies of Mesenchymal Stem Cell Propagation: Adverse Events and Potential Risk of Functional Changes.
Stem Cells Int. 2019 Mar 6;2019:7012692. doi: 10.1155/2019/7012692. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验