Division of Fundamental Research on Public Agenda, National Institute for Mathematical Sciences, Daejeon, South Korea.
AIRISS AI Team, Yuseong-gu, Deajeon, South Korea.
PLoS One. 2022 Nov 10;17(11):e0274203. doi: 10.1371/journal.pone.0274203. eCollection 2022.
We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were randomly applied, and they were divided into two classes, "like (positive)" and "dislike (negative)", according to the preference score given by the subject. We extracted frequency features using well-known frequency bands, i.e., alpha, beta and low and high gamma bands, and then we created a matrix including frequency and spatial information of the EEG data. We developed seven CNN-based models: (1) inception-like CNN with four-band merged input, (2) stacked CNN with four-band merged input, (3) stacked CNN with four-band parallel input, and stacked CNN with single-band input of (4) alpha, (5) beta, (6) low gamma, and (7) high gamma. The models were evaluated by the Leave-One-Subject-Out Cross-Validation method. In like/dislike two-class classification, the average accuracies of all subjects were 73.2%, 75.4%, 73.9%, 68.8%, 68.0%, 70.7%, and 69.7%, respectively. We found that the classification performance is higher when using multi-band features than when using single-band feature. This is the first study to apply a CNN-based deep learning method based on EEG data to evaluate preference for cosmetic creams.
我们报告了一种基于深度学习的情绪识别方法,该方法使用收集的应用美容霜时的 EEG 数据。根据受试者给出的偏好评分,将四种质地不同的面霜随机分为“喜欢(正)”和“不喜欢(负)”两类。我们使用了著名的频段(即 alpha、beta 和低、高 gamma 频段)提取频率特征,然后创建了一个包含 EEG 数据的频率和空间信息的矩阵。我们开发了七个基于 CNN 的模型:(1)具有四波段合并输入的 inception-like CNN,(2)具有四波段合并输入的堆叠 CNN,(3)具有四波段并行输入的堆叠 CNN,以及具有单波段输入的堆叠 CNN(4)alpha,(5)beta,(6)低伽马,和(7)高伽马。使用 Leave-One-Subject-Out 交叉验证方法对模型进行了评估。在喜欢/不喜欢两类分类中,所有受试者的平均准确率分别为 73.2%、75.4%、73.9%、68.8%、68.0%、70.7%和 69.7%。我们发现,使用多波段特征的分类性能高于使用单波段特征的分类性能。这是第一项应用基于 EEG 数据的基于 CNN 的深度学习方法评估对美容霜的偏好的研究。