Suppr超能文献

利用 DNA 折纸阐明纳米级受体结合域构象对 SARS-CoV-2 感染和免疫激活的影响。

Elucidating the Effect of Nanoscale Receptor-Binding Domain Organization on SARS-CoV-2 Infection and Immunity Activation with DNA Origami.

机构信息

The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.

Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.

出版信息

J Am Chem Soc. 2022 Nov 23;144(46):21295-21303. doi: 10.1021/jacs.2c09229. Epub 2022 Nov 10.

Abstract

Multivalent display of SARS-CoV-2 RBDs (receptor-binding domains, prime proteins for viral infection and as vaccine immunogens) affects infectivity and as immunogens on a virus-like particle (VLP) can enhance immune response. However, the viral attachment and immune response initiated by the copy number and distribution pattern of SARS-CoV-2 RBDs remain poorly understood. Here, we organize SARS-CoV-2 RBDs on DNA nanoballs of ∼74 nm diameter by an aptamer-guided assembly for a systematic interrogation. We find that both the affinity and the rate of the DNA-based VLP binding to the host cell increase with the RBD number (10-90). In addition, a concentrated RBD distribution promotes faster and stronger interaction to the host cell than an even RBD distribution. Moreover, it is interesting to learn that the immunity activation does not increase linearly with RBD numbers on the VLP. As few as 20 evenly distributed RBDs per VLP can elicit up to 86% immunity of macrophage cells. Overall, the work provides a new tool to study SARS-CoV-2 infection and VLP-based immunity activation, which should deepen our understanding of viral infection and facilitate the development of highly effective antiviral vaccines.

摘要

SARS-CoV-2 RBD(受体结合域,病毒感染的主要蛋白和疫苗免疫原)的多价展示会影响感染性,而作为类病毒颗粒(VLP)上的免疫原可以增强免疫反应。然而,SARS-CoV-2 RBD 的拷贝数和分布模式引发的病毒附着和免疫反应仍知之甚少。在这里,我们通过适体引导的组装将 SARS-CoV-2 RBD 组织在直径约为 74nm 的 DNA 纳米球上,以进行系统研究。我们发现,DNA 基 VLP 与宿主细胞的结合亲和力和速率都随 RBD 数量(10-90)增加。此外,集中的 RBD 分布比均匀的 RBD 分布更能促进更快、更强的与宿主细胞相互作用。此外,有趣的是,我们了解到免疫激活不会随 VLP 上的 RBD 数量呈线性增加。每个 VLP 上仅有 20 个均匀分布的 RBD 就可以引发高达 86%的巨噬细胞免疫。总的来说,这项工作提供了一种研究 SARS-CoV-2 感染和基于 VLP 的免疫激活的新工具,这应该加深我们对病毒感染的理解,并有助于开发高效的抗病毒疫苗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验