Suppr超能文献

优化无细胞蛋白质合成以提高大肠杆菌素的产量和活性

Optimizing Cell-Free Protein Synthesis for Increased Yield and Activity of Colicins.

作者信息

Jin Xing, Kightlinger Weston, Hong Seok Hoon

机构信息

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.

Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.

出版信息

Methods Protoc. 2019 Apr 11;2(2):28. doi: 10.3390/mps2020028.

Abstract

Colicins are antimicrobial proteins produced by that hold great promise as viable complements or alternatives to antibiotics. Cell-free protein synthesis (CFPS) is a useful production platform for toxic proteins because it eliminates the need to maintain cell viability, a common problem in cell-based production. Previously, we demonstrated that colicins produced by CFPS based on crude lysates are effective in eradicating antibiotic-tolerant bacteria known as persisters. However, we also found that some colicins have poor solubility or low cell-killing activity. In this study, we improved the solubility of colicin M from 16% to nearly 100% by producing it in chaperone-enriched extracts, resulting in enhanced cell-killing activity. We also improved the cytotoxicity of colicin E3 by adding or co-expressing the E3 immunity protein during the CFPS reaction, suggesting that the E3 immunity protein enhances colicin E3 activity in addition to protecting the host strain. Finally, we confirmed our previous finding that active colicins can be rapidly synthesized by observing colicin E1 production over time in CFPS. Within three hours of CFPS incubation, colicin E1 reached its maximum production yield and maintained high cytotoxicity during longer incubations up to 20 h. Taken together, our findings indicate that colicin production can be easily optimized for improved solubility and activity using the CFPS platform.

摘要

大肠杆菌素是由[具体产生菌]产生的抗菌蛋白,作为抗生素的可行补充物或替代品具有巨大潜力。无细胞蛋白质合成(CFPS)是一种用于生产有毒蛋白质的有用平台,因为它无需维持细胞活力,而这是基于细胞的生产中常见的问题。此前,我们证明基于粗[具体菌]裂解物的CFPS产生的大肠杆菌素在根除被称为持留菌的耐抗生素细菌方面是有效的。然而,我们也发现一些大肠杆菌素溶解性差或细胞杀伤活性低。在本研究中,我们通过在富含伴侣蛋白的[具体菌]提取物中生产大肠杆菌素M,将其溶解度从16%提高到近100%,从而增强了细胞杀伤活性。我们还通过在CFPS反应过程中添加或共表达E3免疫蛋白提高了大肠杆菌素E3的细胞毒性,这表明E3免疫蛋白除了保护宿主菌株外,还增强了大肠杆菌素E3的活性。最后,我们通过观察CFPS过程中大肠杆菌素E1随时间的产生情况,证实了我们之前的发现,即活性大肠杆菌素可以快速合成。在CFPS孵育三小时内,大肠杆菌素E1达到其最大产量,并在长达20小时的较长孵育过程中保持高细胞毒性。综上所述,我们的研究结果表明,使用CFPS平台可以轻松优化大肠杆菌素的生产,以提高其溶解度和活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ca5/6632115/2a5fa7aa570b/mps-02-00028-g001.jpg

相似文献

1
Optimizing Cell-Free Protein Synthesis for Increased Yield and Activity of Colicins.
Methods Protoc. 2019 Apr 11;2(2):28. doi: 10.3390/mps2020028.
2
Rapid production and characterization of antimicrobial colicins using -based cell-free protein synthesis.
Synth Biol (Oxf). 2018 Jun 6;3(1):ysy004. doi: 10.1093/synbio/ysy004. eCollection 2018.
4
The TolA protein interacts with colicin E1 differently than with other group A colicins.
J Bacteriol. 1997 Jun;179(11):3683-90. doi: 10.1128/jb.179.11.3683-3690.1997.
5
Mechanism of export of colicin E1 and colicin E3.
J Bacteriol. 1979 Jun;138(3):770-8. doi: 10.1128/jb.138.3.770-778.1979.
7
O-Antigen-Dependent Colicin Insensitivity of Uropathogenic Escherichia coli.
J Bacteriol. 2019 Jan 28;201(4). doi: 10.1128/JB.00545-18. Print 2019 Feb 15.
8
Behavior of colicins E1, E2, and E3 attached to sephadex beads.
Biochemistry. 1976 Feb 10;15(3):666-71. doi: 10.1021/bi00648a034.
9
Binding domains of colicins E1, E2 and E3 in the receptor protein BtuB of Escherichia coli.
Folia Microbiol (Praha). 2000;45(5):379-85. doi: 10.1007/BF02817609.
10
Colicins E4, E5, E6 and A and properties of btuB+ colicinogenic transconjugants.
J Gen Microbiol. 1982 Jan;128(1):95-106. doi: 10.1099/00221287-128-1-95.

引用本文的文献

1
Developing an -Based Cell-Free Protein Synthesis System for Artificial Spidroin Production and Characterization.
ACS Synth Biol. 2025 May 16;14(5):1829-1842. doi: 10.1021/acssynbio.5c00241. Epub 2025 Apr 21.
2
Beyond , Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein.
Chem Rev. 2025 Feb 12;125(3):1303-1331. doi: 10.1021/acs.chemrev.4c00126. Epub 2025 Jan 22.
3
Engineering cell-free systems by chemoproteomic-assisted phenotypic screening.
RSC Chem Biol. 2024 Mar 6;5(4):372-385. doi: 10.1039/d4cb00004h. eCollection 2024 Apr 3.
4
Cell-Free Protein Expression in Polymer Materials.
ACS Synth Biol. 2024 Apr 19;13(4):1152-1164. doi: 10.1021/acssynbio.3c00628. Epub 2024 Mar 11.
6
Optimizing Cell-Free Protein Synthesis for Antimicrobial Protein Production.
Methods Mol Biol. 2024;2720:3-16. doi: 10.1007/978-1-0716-3469-1_1.
7
Synthesis of an Anti-CD7 Recombinant Immunotoxin Based on PE24 in CHO and Cell-Free Systems.
Int J Mol Sci. 2022 Nov 8;23(22):13697. doi: 10.3390/ijms232213697.
8
Engineering to produce and secrete colicins for rapid and selective biofilm cell killing.
AIChE J. 2021 Dec;67(12). doi: 10.1002/aic.17466. Epub 2021 Sep 23.
9
Characterizing and Improving pET Vectors for Cell-free Expression.
Front Bioeng Biotechnol. 2022 Jun 23;10:895069. doi: 10.3389/fbioe.2022.895069. eCollection 2022.
10
Cell-Free Protein Synthesis for the Screening of Novel Azoreductases and Their Preferred Electron Donor.
Chembiochem. 2022 Aug 3;23(15):e202200121. doi: 10.1002/cbic.202200121. Epub 2022 Jun 16.

本文引用的文献

1
Rapid production and characterization of antimicrobial colicins using -based cell-free protein synthesis.
Synth Biol (Oxf). 2018 Jun 6;3(1):ysy004. doi: 10.1093/synbio/ysy004. eCollection 2018.
2
On mechanisms of colicin import: the outer membrane quandary.
Biochem J. 2018 Dec 12;475(23):3903-3915. doi: 10.1042/BCJ20180477.
3
Biosensing estrogenic endocrine disruptors in human blood and urine: A RAPID cell-free protein synthesis approach.
Toxicol Appl Pharmacol. 2018 Apr 15;345:19-25. doi: 10.1016/j.taap.2018.02.016. Epub 2018 Feb 27.
4
The Colicin E1 TolC Box: Identification of a Domain Required for Colicin E1 Cytotoxicity and TolC Binding.
J Bacteriol. 2016 Dec 13;199(1). doi: 10.1128/JB.00412-16. Print 2017 Jan 1.
5
The growing impact of lyophilized cell-free protein expression systems.
Bioengineered. 2017 Jul 4;8(4):325-330. doi: 10.1080/21655979.2016.1241925. Epub 2016 Oct 28.
6
The Colicin E1 TolC-Binding Conformer: Pillar or Pore Function of TolC in Colicin Import?
Biochemistry. 2016 Sep 13;55(36):5084-94. doi: 10.1021/acs.biochem.6b00621. Epub 2016 Aug 29.
9
The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding.
Trends Biochem Sci. 2016 Jan;41(1):62-76. doi: 10.1016/j.tibs.2015.07.009. Epub 2015 Sep 25.
10
Cell-free protein synthesis of a cytotoxic cancer therapeutic: Onconase production and a just-add-water cell-free system.
Biotechnol J. 2016 Feb;11(2):274-81. doi: 10.1002/biot.201500237. Epub 2015 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验