U.S. Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States.
Defense Threat Reduction Agency, 2800 Bush River Road, Gunpowder, Maryland 21010, United States.
ACS Synth Biol. 2024 Apr 19;13(4):1152-1164. doi: 10.1021/acssynbio.3c00628. Epub 2024 Mar 11.
While synthetic biology has advanced complex capabilities such as sensing and molecular synthesis in aqueous solutions, important applications may also be pursued for biological systems in solid materials. Harsh processing conditions used to produce many synthetic materials such as plastics make the incorporation of biological functionality challenging. One technology that shows promise in circumventing these issues is cell-free protein synthesis (CFPS), where core cellular functionality is reconstituted outside the cell. CFPS enables genetic functions to be implemented without the complications of membrane transport or concerns over the cellular viability or release of genetically modified organisms. Here, we demonstrate that dried CFPS reactions have remarkable tolerance to heat and organic solvent exposure during the casting processes for polymer materials. We demonstrate the utility of this observation by creating plastics that have spatially patterned genetic functionality, produce antimicrobials in situ, and perform sensing reactions. The resulting materials unlock the potential to deliver DNA-programmable biofunctionality in a ubiquitous class of synthetic materials.
虽然合成生物学已经在水相溶液中实现了复杂的功能,如传感和分子合成,但也可以为固体材料中的生物系统追求重要的应用。在生产许多合成材料(如塑料)时使用的苛刻处理条件使得生物功能的融入具有挑战性。一种有希望解决这些问题的技术是无细胞蛋白质合成(CFPS),其中核心细胞功能在细胞外重新构建。CFPS 使遗传功能能够实现,而不会出现膜转运的复杂性问题,也不会担心细胞活力或转基因生物的释放。在这里,我们证明在聚合物材料的铸造过程中,干燥的 CFPS 反应对热和有机溶剂暴露具有显著的耐受性。我们通过创建具有空间图案化遗传功能的塑料、原位产生抗菌剂和进行传感反应来证明这一观察结果的实用性。由此产生的材料释放了在普遍存在的一类合成材料中提供可编程生物功能的潜力。