Suppr超能文献

载有硫代硫酸钠的脂质体在类缺氧环境中控制硫化氢释放并保留其生物学特性。

Sodium Thiosulphate-Loaded Liposomes Control Hydrogen Sulphide Release and Retain Its Biological Properties in Hypoxia-like Environment.

作者信息

Sanchez-Aranguren Lissette, Grubliauskiene Milda, Shokr Hala, Balakrishnan Pavanjeeth, Wang Keqing, Ahmad Shakil, Marwah Mandeep Kaur

机构信息

Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK.

Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham B7 4BB, UK.

出版信息

Antioxidants (Basel). 2022 Oct 24;11(11):2092. doi: 10.3390/antiox11112092.

Abstract

Hypoxia, or insufficient oxygen availability is a common feature in the development of a myriad of cardiovascular-related conditions including ischemic disease. Hydrogen sulphide (HS) donors, such as sodium thiosulphate (STS), are known for their cardioprotective properties. However, HS due to its gaseous nature, is released and cleared rapidly, limiting its potential translation to clinical settings. For the first time, we developed and characterised liposome formulations encapsulating STS and explored their potential for modulating STS uptake, HS release and the ability to retain pro-angiogenic and biological signals in a hypoxia-like environment mirroring oxygen insufficiency in vitro. Liposomes were prepared by varying lipid ratios and characterised for size, polydispersity and charge. STS liposomal encapsulation was confirmed by HPLC-UV detection and STS uptake and HS release was assessed in vitro. To mimic hypoxia, cobalt chloride (CoCl) was administered in conjunction with formulated and non-formulated STS, to explore pro-angiogenic and metabolic signals. Optimised liposomal formulation observed a liposome diameter of 146.42 ± 7.34 nm, a polydispersity of 0.22 ± 0.19, and charge of 3.02 ± 1.44 mV, resulting in 25% STS encapsulation. Maximum STS uptake (76.96 ± 3.08%) from liposome encapsulated STS was determined at 24 h. Co-exposure with CoCl and liposome encapsulated STS resulted in increased vascular endothelial growth factor mRNA as well as protein expression, enhanced wound closure and increased capillary-like formation. Finally, liposomal STS reversed metabolic switch induced by hypoxia by enhancing mitochondrial bioenergetics. These novel findings provide evidence of a feasible controlled-delivery system for STS, thus HS, using liposome-based nanoparticles. Likewise, data suggests that in scenarios of hypoxia, liposomal STS is a good therapeutic candidate to sustain pro-angiogenic signals and retain metabolic functions that might be impaired by limited oxygen and nutrient availability.

摘要

缺氧,即氧气供应不足,是包括缺血性疾病在内的众多心血管相关病症发展过程中的一个常见特征。硫化氢(HS)供体,如硫代硫酸钠(STS),因其心脏保护特性而闻名。然而,由于HS的气态性质,它会迅速释放和清除,限制了其在临床环境中的潜在应用。我们首次开发并表征了包裹STS的脂质体制剂,并探讨了它们在模拟体外缺氧样环境(即氧气不足)中调节STS摄取、HS释放以及保留促血管生成和生物信号的潜力。通过改变脂质比例制备脂质体,并对其大小、多分散性和电荷进行表征。通过高效液相色谱-紫外检测确认STS的脂质体包封,并在体外评估STS摄取和HS释放。为了模拟缺氧,将氯化钴(CoCl)与配制和未配制的STS联合使用,以探索促血管生成和代谢信号。优化后的脂质体制剂观察到脂质体直径为146.42±7.34纳米,多分散性为0.22±0.19,电荷为3.02±1.44毫伏,导致25%的STS包封。脂质体包裹的STS在24小时时的最大STS摄取量为(76.96±3.08%)。CoCl与脂质体包裹的STS共同暴露导致血管内皮生长因子mRNA以及蛋白表达增加,伤口闭合增强,毛细血管样形成增加。最后,脂质体STS通过增强线粒体生物能量学逆转了缺氧诱导的代谢转换。这些新发现为使用基于脂质体的纳米颗粒构建用于STS(进而用于HS)的可行控释系统提供了证据。同样,数据表明,在缺氧情况下,脂质体STS是维持促血管生成信号和保留可能因氧气和营养物质供应有限而受损的代谢功能的良好治疗候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f663/9686859/04b675721c60/antioxidants-11-02092-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验