Suppr超能文献

部分互信息从混合嵌入到离散值时间序列的适配

Adaptation of Partial Mutual Information from Mixed Embedding to Discrete-Valued Time Series.

作者信息

Papapetrou Maria, Siggiridou Elsa, Kugiumtzis Dimitris

机构信息

Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

出版信息

Entropy (Basel). 2022 Oct 22;24(11):1505. doi: 10.3390/e24111505.

Abstract

A causality analysis aims at estimating the interactions of the observed variables and subsequently the connectivity structure of the observed dynamical system or stochastic process. The partial mutual information from mixed embedding (PMIME) is found appropriate for the causality analysis of continuous-valued time series, even of high dimension, as it applies a dimension reduction by selecting the most relevant lag variables of all the observed variables to the response, using conditional mutual information (CMI). The presence of lag components of the driving variable in this vector implies a direct causal (driving-response) effect. In this study, the PMIME is appropriately adapted to discrete-valued multivariate time series, called the discrete PMIME (DPMIME). An appropriate estimation of the discrete probability distributions and CMI for discrete variables is implemented in the DPMIME. Further, the asymptotic distribution of the estimated CMI is derived, allowing for a parametric significance test for the CMI in the DPMIME, whereas for the PMIME, there is no parametric test for the CMI and the test is performed using resampling. Monte Carlo simulations are performed using different generating systems of discrete-valued time series. The simulation suggests that the parametric significance test for the CMI in the progressive algorithm of the DPMIME is compared favorably to the corresponding resampling significance test, and the accuracy of the DPMIME in the estimation of direct causality converges with the time-series length to the accuracy of the PMIME. Further, the DPMIME is used to investigate whether the global financial crisis has an effect on the causality network of the financial world market.

摘要

因果关系分析旨在估计观测变量之间的相互作用,进而推断观测到的动态系统或随机过程的连通性结构。发现混合嵌入的部分互信息(PMIME)适用于连续值时间序列的因果关系分析,即使是高维序列也适用,因为它通过使用条件互信息(CMI),从所有观测变量中选择与响应最相关的滞后变量来进行降维。该向量中驱动变量滞后成分的存在意味着直接因果(驱动 - 响应)效应。在本研究中,PMIME被适当地应用于离散值多元时间序列,称为离散PMIME(DPMIME)。DPMIME中实现了对离散变量离散概率分布和CMI的适当估计。此外,推导了估计CMI的渐近分布,从而可以对DPMIME中的CMI进行参数显著性检验,而对于PMIME,不存在CMI的参数检验,检验是通过重采样进行的。使用不同的离散值时间序列生成系统进行蒙特卡罗模拟。模拟结果表明,DPMIME渐进算法中CMI的参数显著性检验优于相应的重采样显著性检验,并且DPMIME在直接因果关系估计中的准确性随着时间序列长度的增加收敛到PMIME的准确性。此外,DPMIME被用于研究全球金融危机是否对金融世界市场的因果关系网络有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8651/9689532/205d319c1346/entropy-24-01505-g001.jpg

相似文献

1
Adaptation of Partial Mutual Information from Mixed Embedding to Discrete-Valued Time Series.
Entropy (Basel). 2022 Oct 22;24(11):1505. doi: 10.3390/e24111505.
3
Evaluation of Directed Causality Measures and Lag Estimations in Multivariate Time-Series.
Front Syst Neurosci. 2021 Oct 22;15:620338. doi: 10.3389/fnsys.2021.620338. eCollection 2021.
4
Direct-coupling information measure from nonuniform embedding.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062918. doi: 10.1103/PhysRevE.87.062918. Epub 2013 Jun 25.
5
Detecting Nonlinear Interactions in Complex Systems: Application in Financial Markets.
Entropy (Basel). 2023 Feb 17;25(2):370. doi: 10.3390/e25020370.
7
Identification of Hidden Sources by Estimating Instantaneous Causality in High-Dimensional Biomedical Time Series.
Int J Neural Syst. 2019 May;29(4):1850051. doi: 10.1142/S012906571850051X. Epub 2018 Oct 29.
9
Information theory-based direct causality measure to assess cardiac fibrillation dynamics.
J R Soc Interface. 2023 Oct;20(207):20230443. doi: 10.1098/rsif.2023.0443. Epub 2023 Oct 11.

引用本文的文献

1
Temporally Resolved and Interpretable Machine Learning Model of GPCR conformational transition.
bioRxiv. 2025 Mar 17:2025.03.17.643765. doi: 10.1101/2025.03.17.643765.

本文引用的文献

1
The Convex Mixture Distribution: Granger Causality for Categorical Time Series.
SIAM J Math Data Sci. 2021;3(1):83-112. doi: 10.1137/20m133097x.
2
Granger Causality: A Review and Recent Advances.
Annu Rev Stat Appl. 2022 Mar;9(1):289-319. doi: 10.1146/annurev-statistics-040120-010930. Epub 2021 Nov 17.
3
Statistical physics approaches to the complex Earth system.
Phys Rep. 2021 Feb 18;896:1-84. doi: 10.1016/j.physrep.2020.09.005. Epub 2020 Oct 3.
4
Using symbolic networks to analyse dynamical properties of disease outbreaks.
Proc Math Phys Eng Sci. 2020 Apr;476(2236):20190777. doi: 10.1098/rspa.2019.0777. Epub 2020 Apr 29.
5
Detecting and quantifying causal associations in large nonlinear time series datasets.
Sci Adv. 2019 Nov 27;5(11):eaau4996. doi: 10.1126/sciadv.aau4996. eCollection 2019 Nov.
6
Coupling in complex systems as information transfer across time scales.
Philos Trans A Math Phys Eng Sci. 2019 Dec 16;377(2160):20190094. doi: 10.1098/rsta.2019.0094. Epub 2019 Oct 28.
8
Direct-coupling information measure from nonuniform embedding.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062918. doi: 10.1103/PhysRevE.87.062918. Epub 2013 Jun 25.
9
Nonuniform state-space reconstruction and coupling detection.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 2):016207. doi: 10.1103/PhysRevE.82.016207. Epub 2010 Jul 9.
10
Symbolic transfer entropy.
Phys Rev Lett. 2008 Apr 18;100(15):158101. doi: 10.1103/PhysRevLett.100.158101. Epub 2008 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验