Suppr超能文献

凸混合分布:分类时间序列的格兰杰因果关系

The Convex Mixture Distribution: Granger Causality for Categorical Time Series.

作者信息

Tank Alex, Li Xiudi, Fox Emily B, Shojaie Ali

机构信息

The Voleon Group, Berkeley, CA.

Department of Biostatistics, University of Washington, Seattle WA.

出版信息

SIAM J Math Data Sci. 2021;3(1):83-112. doi: 10.1137/20m133097x.

Abstract

We present a framework for learning Granger causality networks for multivariate categorical time series based on the mixture transition distribution (MTD) model. Traditionally, MTD is plagued by a nonconvex objective, non-identifiability, and presence of local optima. To circumvent these problems, we recast inference in the MTD as a convex problem. The new formulation facilitates the application of MTD to high-dimensional multivariate time series. As a baseline, we also formulate a multi-output logistic autoregressive model (mLTD), which while a straightforward extension of autoregressive Bernoulli generalized linear models, has not been previously applied to the analysis of multivariate categorial time series. We establish identifiability conditions of the MTD model and compare them to those for mLTD. We further devise novel and efficient optimization algorithms for MTD based on our proposed convex formulation, and compare the MTD and mLTD in both simulated and real data experiments. Finally, we establish consistency of the convex MTD in high dimensions. Our approach simultaneously provides a comparison of methods for network inference in categorical time series and opens the door to modern, regularized inference with the MTD model.

摘要

我们提出了一个基于混合转移分布(MTD)模型学习多元分类时间序列的格兰杰因果网络的框架。传统上,MTD存在非凸目标、不可识别性和局部最优等问题。为了规避这些问题,我们将MTD中的推断重新表述为一个凸问题。新的公式便于将MTD应用于高维多元时间序列。作为基线,我们还构建了一个多输出逻辑自回归模型(mLTD),它虽然是自回归伯努利广义线性模型的直接扩展,但此前尚未应用于多元分类时间序列的分析。我们建立了MTD模型的可识别性条件,并将其与mLTD的条件进行比较。我们基于提出的凸公式进一步设计了新颖且高效的MTD优化算法,并在模拟和真实数据实验中对MTD和mLTD进行比较。最后,我们建立了高维凸MTD的一致性。我们的方法同时提供了分类时间序列中网络推断方法的比较,并为使用MTD模型进行现代正则化推断打开了大门。

相似文献

4
Kernel canonical-correlation Granger causality for multiple time series.多时间序列的核典型相关格兰杰因果关系
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 1):041921. doi: 10.1103/PhysRevE.83.041921. Epub 2011 Apr 25.
5
A copula approach to assessing Granger causality.一种用于评估格兰杰因果关系的Copula方法。
Neuroimage. 2014 Oct 15;100:125-34. doi: 10.1016/j.neuroimage.2014.06.013. Epub 2014 Jun 17.
6
Learning High-dimensional Generalized Linear Autoregressive Models.学习高维广义线性自回归模型。
IEEE Trans Inf Theory. 2019 Apr;65(4):2401-2422. doi: 10.1109/TIT.2018.2884673. Epub 2018 Dec 4.
8
Neural Granger Causality.神经格兰杰因果关系。
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4267-4279. doi: 10.1109/TPAMI.2021.3065601. Epub 2022 Jul 1.
9
Quantifying Evidence for-and against-Granger Causality with Bayes Factors.用量化贝叶斯因子来衡量格兰杰因果关系的证据。
Multivariate Behav Res. 2024 Nov-Dec;59(6):1148-1158. doi: 10.1080/00273171.2023.2214890. Epub 2023 Jun 9.
10
Supervised Estimation of Granger-Based Causality between Time Series.时间序列之间基于格兰杰因果关系的监督估计
Front Neuroinform. 2017 Nov 29;11:68. doi: 10.3389/fninf.2017.00068. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验