Suppr超能文献

DA-LSTM-VAE:用于关键绩效指标异常检测的基于双阶段注意力机制的长短期记忆变分自编码器

DA-LSTM-VAE: Dual-Stage Attention-Based LSTM-VAE for KPI Anomaly Detection.

作者信息

Zhao Yun, Zhang Xiuguo, Shang Zijing, Cao Zhiying

机构信息

School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China.

出版信息

Entropy (Basel). 2022 Nov 5;24(11):1613. doi: 10.3390/e24111613.

Abstract

To ensure the normal operation of the system, the enterprise's operations engineer will monitor the system through the KPI (key performance indicator). For example, web page visits, server memory utilization, etc. KPI anomaly detection is a core technology, which is of great significance for rapid fault detection and repair. This paper proposes a novel dual-stage attention-based LSTM-VAE (DA-LSTM-VAE) model for KPI anomaly detection. Firstly, in order to capture time correlation in KPI data, long-short-term memory (LSTM) units are used to replace traditional neurons in the variational autoencoder (VAE). Then, in order to improve the effect of KPI anomaly detection, an attention mechanism is introduced into the input stage of the encoder and decoder, respectively. During the input stage of the encoder, a time attention mechanism is adopted to assign different weights to different time points, which can adaptively select important input sequences to avoid the influence of noise in the data. During the input stage of the decoder, a feature attention mechanism is adopted to adaptively select important latent variable representations, which can capture the long-term dependence of time series better. In addition, this paper proposes an adaptive threshold method based on anomaly scores measured by reconstruction probability, which can minimize false positives and false negatives and avoid adjustment of the threshold manually. Experimental results in a public dataset show that the proposed method in this paper outperforms other baseline methods.

摘要

为确保系统正常运行,企业的运维工程师将通过关键绩效指标(KPI)来监控系统。例如,网页访问量、服务器内存利用率等。KPI异常检测是一项核心技术,对于快速故障检测和修复具有重要意义。本文提出了一种用于KPI异常检测的新型基于双阶段注意力的长短期记忆变分自编码器(DA-LSTM-VAE)模型。首先,为了捕捉KPI数据中的时间相关性,在变分自编码器(VAE)中使用长短期记忆(LSTM)单元来取代传统神经元。然后,为了提高KPI异常检测的效果,在编码器和解码器的输入阶段分别引入注意力机制。在编码器的输入阶段,采用时间注意力机制为不同时间点分配不同权重,能够自适应地选择重要的输入序列,避免数据中噪声的影响。在解码器的输入阶段,采用特征注意力机制自适应地选择重要的潜在变量表示,能够更好地捕捉时间序列的长期依赖性。此外,本文提出了一种基于重构概率测量的异常分数的自适应阈值方法,该方法可以最小化误报和漏报,并避免手动调整阈值。在一个公共数据集上的实验结果表明,本文提出的方法优于其他基线方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7b/9689873/4fb11c64260c/entropy-24-01613-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验