Suppr超能文献

用于克拉屈滨制造的磁性多酶体系。

Magnetic Multi-Enzymatic System for Cladribine Manufacturing.

机构信息

Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain.

Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.

出版信息

Int J Mol Sci. 2022 Nov 7;23(21):13634. doi: 10.3390/ijms232113634.

Abstract

Enzyme-mediated processes have proven to be a valuable and sustainable alternative to traditional chemical methods. In this regard, the use of multi-enzymatic systems enables the realization of complex synthetic schemes, while also introducing a number of additional advantages, including the conversion of reversible reactions into irreversible processes, the partial or complete elimination of product inhibition problems, and the minimization of undesirable by-products. In addition, the immobilization of biocatalysts on magnetic supports allows for easy reusability and streamlines the downstream process. Herein we have developed a cascade system for cladribine synthesis based on the sequential action of two magnetic biocatalysts. For that purpose, purine 2'-deoxyribosyltransferase from (PDT) and hypoxanthine phosphoribosyltransferase (HPRT) were immobilized onto Ni-prechelated magnetic microspheres (MagReSynNTA). Among the resulting derivatives, MPDT3 (activity: 11,935 IU/g, 63% retained activity, operational conditions: 40 °C and pH 5-7) and MHPRT3 (12,840 IU/g, 45% retained activity, operational conditions: pH 5-8 and 40-60 °C) emerge as optimal catalysts for further synthetic application. Moreover, the MPDT3/MHPRT3 system was biochemically characterized and successfully applied to the one-pot synthesis of cladribine under various conditions. This methodology not only displayed a 1.67-fold improvement in cladribine synthesis (compared to MPDT3), but it also implied a practically complete transformation of the undesired by-product into a high-added-value product (90% conversion of Hyp into IMP). Finally, MPDT3/MHPRT3 was reused for 16 cycles, which displayed a 75% retained activity.

摘要

酶介导的过程已被证明是替代传统化学方法的有价值且可持续的选择。在这方面,使用多酶系统可以实现复杂的合成方案,同时还引入了一些其他的优点,包括将可逆反应转化为不可逆过程、部分或完全消除产物抑制问题以及最小化不需要的副产物。此外,将生物催化剂固定在磁性载体上可以实现易于重复使用,并简化下游工艺。在此,我们开发了一种基于两种磁性生物催化剂顺序作用的克拉屈滨合成级联系统。为此,将来自(PDT)的嘌呤 2'-脱氧核糖基转移酶和次黄嘌呤磷酸核糖基转移酶(HPRT)固定在 Ni 预螯合磁性微球(MagReSynNTA)上。在所得到的衍生物中,MPDT3(活性:11,935 IU/g,保留 63%的活性,操作条件:40°C 和 pH 5-7)和 MHPRT3(12,840 IU/g,保留 45%的活性,操作条件:pH 5-8 和 40-60°C)是进一步合成应用的最佳催化剂。此外,对 MPDT3/MHPRT3 系统进行了生化表征,并在各种条件下成功应用于克拉屈滨的一锅合成。该方法不仅使克拉屈滨的合成提高了 1.67 倍(与 MPDT3 相比),而且还将不需要的副产物几乎完全转化为高附加值的产物(Hyp 转化为 IMP 的转化率为 90%)。最后,MPDT3/MHPRT3 重复使用了 16 次,保留了 75%的活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/992e/9658597/1cb43d60de79/ijms-23-13634-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验