Suppr超能文献

用于改善基于扩散的离子强度传感器性能的多孔纤维素基质研究

Porous Cellulose Substrate Study to Improve the Performance of Diffusion-Based Ionic Strength Sensors.

作者信息

Khosravi Hamid, Mehrdel Pouya, Martínez Joan Antoni López, Casals-Terré Jasmina

机构信息

Mechanical Engineering Department-MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain.

Department of Mining, Industrial and ICT Engineering (EMIT), Universitat Politècnica de Catalunya (UPC), AV. Bases de Manresa 61-73, 08240 Manresa, Barcelona, Spain.

出版信息

Membranes (Basel). 2022 Oct 29;12(11):1074. doi: 10.3390/membranes12111074.

Abstract

Microfluidic paper-based analytical devices (µPADs) are leading the field of low-cost, quantitative in-situ assays. However, understanding the flow behavior in cellulose-based membranes to achieve an accurate and rapid response has remained a challenge. Previous studies focused on commercial filter papers, and one of their problems was the time required to perform the test. This work studies the effect of different cellulose substrates on diffusion-based sensor performance. A diffusion-based sensor was laser cut on different cellulose fibers (Whatman and lab-made Sisal papers) with different structure characteristics, such as basis weight, density, pore size, fiber diameter, and length. Better sensitivity and faster response are found in papers with bigger pore sizes and lower basis weights. The designed sensor has been successfully used to quantify the ionic concentration of commercial wines with a 13.6 mM limit of detection in 30 s. The developed µPAD can be used in quantitative assays for agri-food applications without the need for any external equipment or trained personnel.

摘要

基于微流控纸的分析装置(µPADs)引领着低成本、定量原位检测领域。然而,要理解基于纤维素的膜中的流动行为以实现准确快速的响应仍然是一项挑战。以往的研究集中在商用滤纸上,其问题之一是进行测试所需的时间。这项工作研究了不同纤维素基材对基于扩散的传感器性能的影响。在具有不同结构特征(如定量、密度、孔径、纤维直径和长度)的不同纤维素纤维(沃特曼滤纸和实验室自制剑麻纸)上激光切割出基于扩散的传感器。在孔径较大且定量较低的纸张中发现了更好的灵敏度和更快的响应。所设计的传感器已成功用于定量商业葡萄酒的离子浓度,检测限为13.6 mM,响应时间为30秒。所开发的µPAD可用于农业食品应用的定量检测,无需任何外部设备或专业人员。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70f2/9699251/431d705d52f0/membranes-12-01074-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验