Department of Fuel, Polymer, and Polygraphic Materials Technologies, Ukrainian State University of Chemical Technology, 49005 Dnipro, Ukraine.
Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA.
Molecules. 2022 Oct 28;27(21):7336. doi: 10.3390/molecules27217336.
The rapid spread of SARS-CoV-2 required immediate actions to control the transmission of the virus and minimize its impact on humanity. An extensive mutation rate of this viral genome contributes to the virus' ability to quickly adapt to environmental changes, impacts transmissibility and antigenicity, and may facilitate immune escape. Therefore, it is of great interest for researchers working in vaccine development and drug design to consider the impact of mutations on virus-drug interactions. Here, we propose a multitarget drug discovery pipeline for identifying potential drug candidates which can efficiently inhibit the Receptor Binding Domain (RBD) of spike glycoproteins from different variants of SARS-CoV-2. Eight homology models of RBDs for selected variants were created and validated using reference crystal structures. We then investigated interactions between host receptor ACE2 and RBDs from nine variants of SARS-CoV-2. It led us to conclude that efficient multi-variant targeting drugs should be capable of blocking residues Q(R)493 and N487 in RBDs. Using methods of molecular docking, molecular mechanics, and molecular dynamics, we identified three lead compounds (hesperidin, narirutin, and neohesperidin) suitable for multitarget SARS-CoV-2 inhibition. These compounds are flavanone glycosides found in citrus fruits - an active ingredient of Traditional Chinese Medicines. The developed pipeline can be further used to (1) model mutants for which crystal structures are not yet available and (2) scan a more extensive library of compounds against other mutated viral proteins.
SARS-CoV-2 的迅速传播需要立即采取行动来控制病毒的传播并将其对人类的影响降到最低。该病毒基因组的广泛突变率有助于其快速适应环境变化,影响其传染性和抗原性,并可能促进免疫逃逸。因此,对于从事疫苗开发和药物设计的研究人员来说,考虑突变对病毒-药物相互作用的影响是非常重要的。在这里,我们提出了一种多靶标药物发现管道,用于鉴定潜在的药物候选物,这些候选物可以有效地抑制来自不同 SARS-CoV-2 变体的刺突糖蛋白的受体结合域(RBD)。为选定的变体创建了 8 个 RBD 的同源模型,并使用参考晶体结构进行了验证。然后,我们研究了宿主受体 ACE2 与来自 9 种 SARS-CoV-2 变体的 RBD 之间的相互作用。这使我们得出结论,有效的多变体靶向药物应该能够阻断 RBD 中的残基 Q(R)493 和 N487。使用分子对接、分子力学和分子动力学方法,我们鉴定了三种适合多靶标 SARS-CoV-2 抑制的先导化合物(橙皮苷、柚皮苷和新橙皮苷)。这些化合物是在柑橘类水果中发现的类黄酮糖苷,是中药的一种活性成分。开发的管道可以进一步用于(1)对尚无晶体结构的突变体进行建模,(2)针对其他突变病毒蛋白扫描更广泛的化合物库。