Suppr超能文献

稀有气体-氧分子加合物的电子和动力学性质的详细研究。

A Detailed Study of Electronic and Dynamic Properties of Noble Gas-Oxygen Molecule Adducts.

作者信息

Costa Caio Vinícius Sousa, de Jesus Guilherme Carlos Carvalho, de Macedo Luiz Guilherme Machado, Pirani Fernando, Gargano Ricardo

机构信息

Instituto de Física, Universidade de Brasília, Brasília 70297-400, DF, Brazil.

Universidade Federal de São João del Rei, Divinópolis 35501-296, MG, Brazil.

出版信息

Molecules. 2022 Nov 1;27(21):7409. doi: 10.3390/molecules27217409.

Abstract

In this work, the binding features of adducts formed by a noble gas (Ng = He, Ne, Ar, Kr, Xe, and Rn) atom and the oxygen molecule (O) in its ground Σg-3, in the past target of several experimental studies, have been characterized under different theoretical points of view to clarify fundamental aspects of the intermolecular bond. For the most stable configuration of all Ng-O systems, binding energy has been calculated at the theory's CCSD(T)/aug-cc-pVTZ level and compared with the experimental findings. Rovibrational energies, spectroscopic constants, and lifetime as a function of temperature were also evaluated by adopting properly formulated potential energy curves. The nature of the interaction involved was deeply investigated using charge displacement analysis, symmetry-adapted perturbation theory (SAPT), and natural bond orbital (NBO) methods. In all adducts, it was found that the charge transfer plays a minor role, although O is an open shell species exhibiting a positive electron affinity. Obtained results also indicate that the dispersion attraction contribution is the main responsible for the complex stability.

摘要

在这项工作中,稀有气体(Ng = 氦、氖、氩、氪、氙和氡)原子与处于基态Σg-3的氧分子(O)形成的加合物的结合特征,在过去是多项实验研究的目标,现已从不同理论角度进行了表征,以阐明分子间键的基本方面。对于所有Ng-O体系的最稳定构型,在理论的CCSD(T)/aug-cc-pVTZ水平上计算了结合能,并与实验结果进行了比较。还通过采用适当构建的势能曲线评估了振转能量、光谱常数以及作为温度函数的寿命。使用电荷位移分析、对称适配微扰理论(SAPT)和自然键轨道(NBO)方法深入研究了所涉及相互作用的性质。在所有加合物中,发现电荷转移起的作用较小,尽管O是具有正电子亲和势的开壳层物种。所得结果还表明,色散吸引贡献是复合物稳定性的主要原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65c3/9654831/445a8fe7ceb0/molecules-27-07409-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验