Gao Jun, Yang Hongyan, Xiang Zehui, Zhang Biao, Ouyang Xiaoping, Qi Fugang, Zhao Nie
School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China.
Nanomaterials (Basel). 2022 Oct 29;12(21):3830. doi: 10.3390/nano12213830.
It is a challenge to develop cost-effective strategy and design specific microstructures for fabricating polymer-based impact-resistance materials. Human shin bones require impact resistance and energy absorption mechanisms in the case of rapid movement. The shin bones are exciting biological materials that contain concentric circle structures called Haversian structures, which are made up of nanofibrils and collagen. The "soft and hard" structures are beneficial for dynamic impact resistance. Inspired by the excellent impact resistance of human shin bones, we prepared a sort of polyurethane elastomers (PUE) composites incorporated with rigid carbon nanofibers (CNFs) modified by elastic mussel adhesion proteins. CNFs and mussel adhesion proteins formed bone-like microstructures, where the rigid CNFs are served as the bone fibrils, and the flexible mussel adhesion proteins are regarded as collagen. The special structures, which are combined of hard and soft, have a positive dispersion and compatibility in PUE matrix, which can prevent cracks propagation by bridging effect or inducing the crack deflection. These PUE composites showed up to 112.26% higher impact absorbed energy and 198.43% greater dynamic impact strength when compared with the neat PUE. These findings have great implications for the design of composite parts for aerospace, army vehicles, and human protection.
开发具有成本效益的策略并设计特定微观结构以制造聚合物基抗冲击材料是一项挑战。在快速移动的情况下,人类胫骨需要抗冲击和能量吸收机制。胫骨是令人感兴趣的生物材料,其包含称为哈弗斯结构的同心圆结构,该结构由纳米纤维和胶原蛋白组成。这种“软硬”结构有利于动态抗冲击。受人类胫骨优异抗冲击性能的启发,我们制备了一种掺入由弹性贻贝粘附蛋白修饰的刚性碳纳米纤维(CNF)的聚氨酯弹性体(PUE)复合材料。CNF和贻贝粘附蛋白形成了类似骨头的微观结构,其中刚性CNF充当骨纤维,而柔性贻贝粘附蛋白被视为胶原蛋白。这种由硬和软组合而成的特殊结构在PUE基体中具有良好的分散性和相容性,可通过桥接效应或诱导裂纹偏转来防止裂纹扩展。与纯PUE相比,这些PUE复合材料的冲击吸收能量提高了112.26%,动态冲击强度提高了198.43%。这些发现对航空航天、军车和人体防护用复合材料部件的设计具有重要意义。